Handbook of Medical Imaging


Book Description

This volume describes concurrent engineering developments that affect or are expected to influence future development of digital diagnostic imaging. It also covers current developments in Picture Archiving and Communications System (PACS) technology, with particular emphasis on integration of emerging imaging technologies into the hospital environment.




Machine Learning for Tomographic Imaging


Book Description

Machine learning represents a paradigm shift in tomographic imaging, and image reconstruction is a new frontier of machine learning. This book will meet the needs of those who want to catch the wave of smart imaging. The book targets graduate students and researchers in the imaging community. Open network software, working datasets, and multimedia will be included. The first of its kind in the emerging field of deep reconstruction and deep imaging, Machine Learning for Tomographic Imaging presents the most essential elements, latest progresses and an in-depth perspective on this important topic.




Medical Imaging Systems


Book Description

This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.




Computed Tomography


Book Description

This book offers a comprehensive and topical depiction of advances in CT imaging. CT has become a leading medical imaging modality, thanks to its superb spatial and temporal resolution to depict anatomical details. New advances have further extended the technology to provide physiological information, enabling a wide and expanding range of clinical applications. The text covers the latest advancements in CT technology and clinical applications for a variety of CT types and imaging methods. The content is presented in seven parts to offer a structure across a board coverage of CT: CT Systems, CT Performance, CT Practice, Spectral CT, Quantitative CT, Functional CT, and Special Purpose CT. Each contain chapters written by leading experts in the field, covering CT hardware and software innovations, CT operation, CT performance characterization, functional and quantitative applications, and CT systems devised for specific anatomical applications. This book is an ideal resource for practitioners of CT applications in medicine, including physicians, trainees, engineers, and scientists.




Cancer Imaging


Book Description

This second of two volumes on Cancer Imaging covers the three major topics of imaging instrumentation, general imaging applications, and imaging of a number of human cancer types. Where the first volume emphasized lung and breast carcinomas, Volume 2 focuses on prostate, colorectal, ovarian, gastrointestinal, and bone cancers. Although cancer therapy is not the main subject of this series, the crucial role of imaging in selecting the type of therapy and its post-treatment assessment are discussed. The major emphasis in this volume is on cancer imaging; however, differentiation between benign tumors and malignant tumors is also discussed. This volume is sold individually, and Cancer Imaging, Volume 1 [ISBN: 978-0-12-370468-9] sells separately for $189 and also as part of a two volume set [ISBN: 978-0-12-374212-4] for $299.• Concentrates on the application of imaging technology to the diagnosis and prognosis of prostate, colorectal, ovarian, gastrointestinal, and bone cancers• Addresses relationship between radiation dose and image quality • Discusses the role of molecular imaging in identifying changes for the emergence and progression of cancer at the cellular and/or molecular levels




Industrial X-Ray Computed Tomography


Book Description

X-ray computed tomography has been used for several decades as a tool for measuring the three-dimensional geometry of the internal organs in medicine. However, in recent years, we have seen a move in manufacturing industries for the use of X-ray computed tomography; first to give qualitative information about the internal geometry and defects in a component, and more recently, as a fully-quantitative technique for dimensional and materials analysis. This trend is primarily due to the ability of X-ray computed tomography to give a high-density and multi-scale representation of both the external and internal geometry of a component, in a non-destructive, non-contact and relatively fast way. But, due to the complexity of X-ray computed tomography, there are remaining metrological issues to solve and the specification standards are still under development. This book will act as a one-stop-shop resource for students and users of X-ray computed tomography in both academia and industry. It presents the fundamental principles of the technique, detailed descriptions of the various components (hardware and software), current developments in calibration and performance verification and a wealth of example applications. The book will also highlight where there is still work to do, in the perspective that X-ray computed tomography will be an essential part of Industry 4.0.




3D Image Reconstruction for CT and PET


Book Description

This is a practical guide to tomographic image reconstruction with projection data, with strong focus on Computed Tomography (CT) and Positron Emission Tomography (PET). Classic methods such as FBP, ART, SIRT, MLEM and OSEM are presented with modern and compact notation, with the main goal of guiding the reader from the comprehension of the mathematical background through a fast-route to real practice and computer implementation of the algorithms. Accompanied by example data sets, real ready-to-run Python toolsets and scripts and an overview the latest research in the field, this guide will be invaluable for graduate students and early-career researchers and scientists in medical physics and biomedical engineering who are beginners in the field of image reconstruction. A top-down guide from theory to practical implementation of PET and CT reconstruction methods, without sacrificing the rigor of mathematical background Accompanied by Python source code snippets, suggested exercises, and supplementary ready-to-run examples for readers to download from the CRC Press website Ideal for those willing to move their first steps on the real practice of image reconstruction, with modern scientific programming language and toolsets Daniele Panetta is a researcher at the Institute of Clinical Physiology of the Italian National Research Council (CNR-IFC) in Pisa. He earned his MSc degree in Physics in 2004 and specialisation diploma in Health Physics in 2008, both at the University of Pisa. From 2005 to 2007, he worked at the Department of Physics "E. Fermi" of the University of Pisa in the field of tomographic image reconstruction for small animal imaging micro-CT instrumentation. His current research at CNR-IFC has as its goal the identification of novel PET/CT imaging biomarkers for cardiovascular and metabolic diseases. In the field micro-CT imaging, his interests cover applications of three-dimensional morphometry of biosamples and scaffolds for regenerative medicine. He acts as reviewer for scientific journals in the field of Medical Imaging: Physics in Medicine and Biology, Medical Physics, Physica Medica, and others. Since 2012, he is adjunct professor in Medical Physics at the University of Pisa. Niccolò Camarlinghi is a researcher at the University of Pisa. He obtained his MSc in Physics in 2007 and his PhD in Applied Physics in 2012. He has been working in the field of Medical Physics since 2008 and his main research fields are medical image analysis and image reconstruction. He is involved in the development of clinical, pre-clinical PET and hadron therapy monitoring scanners. At the time of writing this book he was a lecturer at University of Pisa, teaching courses of life-sciences and medical physics laboratory. He regularly acts as a referee for the following journals: Medical Physics, Physics in Medicine and Biology, Transactions on Medical Imaging, Computers in Biology and Medicine, Physica Medica, EURASIP Journal on Image and Video Processing, Journal of Biomedical and Health Informatics.







Multislice CT


Book Description

The fourth edition of this well-received book offers a comprehensive update on recent developments and trends in the clinical and scientific applications of multislice computed tomography. Following an initial section on the most significant current technical aspects and issues, detailed information is provided on a comprehensive range of diagnostic applications. Imaging of the head and neck, the cardiovascular system, the abdomen, and the lungs is covered in depth, describing the application of multislice CT in a variety of tumors and other pathologies. Emerging fields such as pediatric imaging and CT-guided interventions are fully addressed, and emergency CT is also covered. Radiation exposure, dual-energy imaging, contrast enhancement, image postprocessing, CT perfusion imaging, and CT angiography all receive close attention. The new edition has been comprehensively revised and complemented by contributions from highly experienced and well-known authors who offer diverse perspectives, highlighting the possibilities offered by the most modern multidetector CT systems. This book will be particularly useful for general users of CT systems who wish to upgrade and enhance not only their machines but also their knowledge.




World Congress on Medical Physics and Biomedical Engineering September 7 - 12, 2009 Munich, Germany


Book Description

Present Your Research to the World! The World Congress 2009 on Medical Physics and Biomedical Engineering – the triennial scientific meeting of the IUPESM - is the world’s leading forum for presenting the results of current scientific work in health-related physics and technologies to an international audience. With more than 2,800 presentations it will be the biggest conference in the fields of Medical Physics and Biomedical Engineering in 2009! Medical physics, biomedical engineering and bioengineering have been driving forces of innovation and progress in medicine and healthcare over the past two decades. As new key technologies arise with significant potential to open new options in diagnostics and therapeutics, it is a multidisciplinary task to evaluate their benefit for medicine and healthcare with respect to the quality of performance and therapeutic output. Covering key aspects such as information and communication technologies, micro- and nanosystems, optics and biotechnology, the congress will serve as an inter- and multidisciplinary platform that brings together people from basic research, R&D, industry and medical application to discuss these issues. As a major event for science, medicine and technology the congress provides a comprehensive overview and in–depth, first-hand information on new developments, advanced technologies and current and future applications. With this Final Program we would like to give you an overview of the dimension of the congress and invite you to join us in Munich! Olaf Dössel Congress President Wolfgang C.