Statistical Theory of Open Systems


Book Description

Let us begin by quoting from the Preface to the author's Statistical Physics (Moscow, Nauka 1982; also published in English by Harwood in 1986): '''My God! Yet another book on statistical physics! There's no room on my bookshelves left!' Such emotionsare quite understandable. Beforejumping to conclusions, however, it would be worthwhile to read the Introduction and look through the table of contents. Then the reader will find that this book is totally different from the existing courses, fundamental and concise. ... We do not use the conventional division into statistical theories ofequilibrium and nonequilibrium states. Rather than that, the theory ofnonequilibrium state is the basis and the backbone oftheentirecourse. ... This approach allows us to develop a unified method for statistical description ofa very broadclassofsystems. ... The author certainly does not wish to exaggerate the advantages of the book, considering it asjustthe first attemptto create a textbookofa new kind." The next step in this direction was the author's Turbulent Motion and the Structure of Chaos (Moscow, Nauka 1990; Kluwer Academic Publishers 1991). This book is subtitled A New Approach to the Statistical Theory of Open Systems. Naturally, the "new approach" is not meant to defy the consistent and efficient methods of the conventional statistical theory; itshould be regarded as auseful reinforcementofsuch methods.




The Nonequilibrium Statistical Mechanics of Open and Closed Systems


Book Description

This is the first unified treatment of the properties of thermodynamically open and closed systems. It provides the theory and methodology that are necessary to understand nonlinear processes. The section on Classical Systems covers topics ranging from the evolution of probability to open and closed systems and non-Hamiltonian systems. The concluding section on Quantum Systems is equally detailed, treating the evolution of quantum systems, c-number fluctuations and operator fluctuations. The material covered is applicable to weather systems, ocean currents, dye lasers and many other nonequilibrium systems. The text is also suitable for students in graduate course. Numerous physical chemical examples facilitate self-study.




The Statistical Theory of Linear Systems


Book Description

Originally published: New York: Wiley, c1988.




Statistical Structure of Quantum Theory


Book Description

New ideas on the mathematical foundations of quantum mechanics, related to the theory of quantum measurement, as well as the emergence of quantum optics, quantum electronics and optical communications have shown that the statistical structure of quantum mechanics deserves special investigation. In the meantime it has become a mature subject. In this book, the author, himself a leading researcher in this field, surveys the basic principles and results of the theory, concentrating on mathematically precise formulations. Special attention is given to the measurement dynamics. The presentation is pragmatic, concentrating on the ideas and their motivation. For detailed proofs, the readers, researchers and graduate students, are referred to the extensively documented literature.




Applications Of Field Theory Methods In Statistical Physics Of Nonequilibrium Systems


Book Description

This book formulates a unified approach to the description of many-particle systems combining the methods of statistical physics and quantum field theory. The benefits of such an approach are in the description of phase transitions during the formation of new spatially inhomogeneous phases, as well in describing quasi-equilibrium systems with spatially inhomogeneous particle distributions (for example, self-gravitating systems) and metastable states.The validity of the methods used in the statistical description of many-particle systems and models (theory of phase transitions included) is discussed and compared. The idea of using the quantum field theory approach and related topics (path integration, saddle-point and stationary-phase methods, Hubbard-Stratonovich transformation, mean-field theory, and functional integrals) is described in detail to facilitate further understanding and explore more applications.To some extent, the book could be treated as a brief encyclopedia of methods applicable to the statistical description of spatially inhomogeneous equilibrium and metastable particle distributions. Additionally, the general approach is not only formulated, but also applied to solve various practically important problems (gravitating gas, Coulomb-like systems, dusty plasmas, thermodynamics of cellular structures, non-uniform dynamics of gravitating systems, etc.).




Lectures on Quantum Statistics


Book Description

Most of the matter in our universe is in a gaseous or plasma state. Yet, most textbooks on quantum statistics focus on examples from and applications in condensed matter systems, due to the prevalence of solids and liquids in our day-to-day lives. In an attempt to remedy that oversight, this book consciously focuses on teaching the subject matter in the context of (dilute) gases and plasmas, while aiming primarily at graduate students and young researchers in the field of quantum gases and plasmas for some of the more advanced topics. The majority of the material is based on a two-semester course held jointly by the authors over many years, and has benefited from extensive feedback provided by countless students and co-workers. The book also includes many historical remarks on the roots of quantum statistics: firstly because students appreciate and are strongly motivated by looking back at the history of a given field of research, and secondly because the spirit permeating this book has been deeply influenced by meetings and discussions with several pioneers of quantum statistics over the past few decades.




Thermodynamics and Statistical Mechanics of Small Systems


Book Description

This book is a printed edition of the Special Issue "Thermodynamics and Statistical Mechanics of Small Systems" that was published in Entropy




Statistical Thermodynamics of Nonequilibrium Processes


Book Description

The structure of the theory ofthermodynamics has changed enormously since its inception in the middle of the nineteenth century. Shortly after Thomson and Clausius enunciated their versions of the Second Law, Clausius, Maxwell, and Boltzmann began actively pursuing the molecular basis of thermo dynamics, work that culminated in the Boltzmann equation and the theory of transport processes in dilute gases. Much later, Onsager undertook the elucidation of the symmetry oftransport coefficients and, thereby, established himself as the father of the theory of nonequilibrium thermodynamics. Com bining the statistical ideas of Gibbs and Langevin with the phenomenological transport equations, Onsager and others went on to develop a consistent statistical theory of irreversible processes. The power of that theory is in its ability to relate measurable quantities, such as transport coefficients and thermodynamic derivatives, to the results of experimental measurements. As powerful as that theory is, it is linear and limited in validity to a neighborhood of equilibrium. In recent years it has been possible to extend the statistical theory of nonequilibrium processes to include nonlinear effects. The modern theory, as expounded in this book, is applicable to a wide variety of systems both close to and far from equilibrium. The theory is based on the notion of elementary molecular processes, which manifest themselves as random changes in the extensive variables characterizing a system. The theory has a hierarchical character and, thus, can be applied at various levels of molecular detail.




Modern Problems Of Theoretical Physics: Jubilee Vol Of D Ivanenko's 85 Birthday


Book Description

Professor D Ivanenko is well known for his fundamental contributions to the establishment of the proton-neutron model of nuclei, elaborating the first non-phenomenological theory of nuclear forces.This volume consists of reviews and original scientific reports devoted to the modern problems of theoretical physics. The topics covered include gravitation and cosmology, fundamentals of quantum physics, nuclear physics and thermodynamics.