Status and Trends in Spent Fuel Reprocessing


Book Description

The management of spent fuel arising from nuclear power production is a crucial issue for the sustainable development of nuclear energy. The IAEA has issued several publications in the past that provide technical information on the global status and trends in spent fuel reprocessing and associated topics, and one reason for this present publication is to provide an update of this information which has mostly focused on the conventional technology applied in the industry. However, the scope of this publication has been significantly expanded in an attempt to make it more comprehensive and by including a section on emerging technologies applicable to future innovative nuclear systems, as are being addressed in such international initiatives as INPRO, Gen IV and MICANET. In an effort to be informative, this publication attempts to provide a state-of-the-art review of these technologies, and to identify major issues associated with reprocessing as an option for spent fuel management. It does not, however, provide any detailed information on some of the related issues such as safety or safeguards, which are addressed in other relevant publications.




Status and Trends in Pyroprocessing of Spent Nuclear Fuels


Book Description

The importance of recycling the spent nuclear fuel through partitioning processes has been recognized worldwide for increasing and sustaining nuclear energy.




Nuclear Energy Basic Principles


Book Description

Describes the rationale and vision for the peaceful use of nuclear energy. The publication identifies the basic principles that nuclear energy systems must satisfy to fulfil their promise of meeting growing global energy demands.




Storing Spent Fuel Until Transport to Reprocessing Or Disposal


Book Description

This publication identifies issues and challenges relevant to the development and implementation of options, policies, strategies and programmes for ensuring safe, secure, and effective storage of spent fuel until transport for reprocessing or disposal. The target audience of this publication includes policy and decision makers who need to be aware of the implicit risks and costs associated with decision timing for determining and implementing an end point for spent fuel management (such as reprocessing or disposal) to ensure the responsible and sustainable use of nuclear energy. The publication will assist those within the nuclear industry in communicating the importance of a clear, credible and sustainable spent fuel management strategy and will encourage decision makers to consider different approaches that may be useful in addressing the uncertainties resulting from an unknown storage duration and an undefined end point for spent fuel management.




Nuclear Fuel Cycle Simulation System (VISTA)


Book Description

The Nuclear Fuel Cycle Simulation System (VISTA) is a simulation system which estimates long term nuclear fuel cycle material and service requirements as well as the material arising from the operation of nuclear fuel cycle facilities and nuclear power reactors. It is a scenario based simulation tool which can model several nuclear fuel cycle options including existing nuclear power reactor types and future possible reactor types. The past operations of the power reactors and fuel cycle facilities can be modelled in the system, in order to estimate the current amount of spent fuel stored or total Pu in stored spent fuel. It can also accept future projections for nuclear power and other scenario parameters in order to predict future fuel cycle material requirements.The model has been designed to be an optimum mixture of simplicity, speed and accuracy. It does not require too many input parameters if the purpose is just to compare the requirements for selected scenarios. Furthermore, the accuracy of the system can be improved by introducing more detailed and correct sets of input parameters.







Reprocessing and Recycling of Spent Nuclear Fuel


Book Description

Reprocessing and Recycling of Spent Nuclear Fuel presents an authoritative overview of spent fuel reprocessing, considering future prospects for advanced closed fuel cycles. Part One introduces the recycling and reprocessing of spent nuclear fuel, reviewing past and current technologies, the possible implications of Generation IV nuclear reactors, and associated safely and security issues. Parts Two and Three focus on aqueous-based reprocessing methods and pyrochemical methods, while final chapters consider the cross-cutting aspects of engineering and process chemistry and the potential for implementation of advanced closed fuel cycles in different parts of the world. - Expert introduction to the recycling and reprocessing of spent nuclear fuel - Detailed overview of past and current technologies, the possible implications of Generation IV nuclear reactors, and associated safely and security issues - A lucid exploration of aqueous-based reprocessing methods and pyrochemical methods




Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment


Book Description

Advanced separations technology is key to closing the nuclear fuel cycle and relieving future generations from the burden of radioactive waste produced by the nuclear power industry. Nuclear fuel reprocessing techniques not only allow for recycling of useful fuel components for further power generation, but by also separating out the actinides, lanthanides and other fission products produced by the nuclear reaction, the residual radioactive waste can be minimised. Indeed, the future of the industry relies on the advancement of separation and transmutation technology to ensure environmental protection, criticality-safety and non-proliferation (i.e., security) of radioactive materials by reducing their long-term radiological hazard.Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment provides a comprehensive and timely reference on nuclear fuel reprocessing and radioactive waste treatment. Part one covers the fundamental chemistry, engineering and safety of radioactive materials separations processes in the nuclear fuel cycle, including coverage of advanced aqueous separations engineering, as well as on-line monitoring for process control and safeguards technology. Part two critically reviews the development and application of separation and extraction processes for nuclear fuel reprocessing and radioactive waste treatment. The section includes discussions of advanced PUREX processes, the UREX+ concept, fission product separations, and combined systems for simultaneous radionuclide extraction. Part three details emerging and innovative treatment techniques, initially reviewing pyrochemical processes and engineering, highly selective compounds for solvent extraction, and developments in partitioning and transmutation processes that aim to close the nuclear fuel cycle. The book concludes with other advanced techniques such as solid phase extraction, supercritical fluid and ionic liquid extraction, and biological treatment processes.With its distinguished international team of contributors, Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment is a standard reference for all nuclear waste management and nuclear safety professionals, radiochemists, academics and researchers in this field. - A comprehensive and timely reference on nuclear fuel reprocessing and radioactive waste treatment - Details emerging and innovative treatment techniques, reviewing pyrochemical processes and engineering, as well as highly selective compounds for solvent extraction - Discusses the development and application of separation and extraction processes for nuclear fuel reprocessing and radioactive waste treatment







Spent Nuclear Fuel and Accelerator-Driven Subcritical Systems


Book Description

This book offers a comprehensive overview of the reprocessing of spent nuclear fuels, and discusses the applications of radiation, particularly spallation neutrons and gamma rays. The unspent nuclear fuel of a reactor amounts to roughly 95 per cent of the loaded fuel. It contains both fertile and fissile fuels, minor and higher actinides and radioactive fission products. In 2015, out of approximately 4 million metric tons of spent fuel, only 90,000 metric tons was reprocessed worldwide; the rest was either sent to repositories, kept for cooling down, or put on a waiting list for future reprocessing. With regard to the direct reutilization of spent nuclear fuel, the new technique of ‘Energy Amplifiers’ has attracted considerable attention among the nuclear energy community. Presenting extensive information on this technique, the book is divided into eight major sections: (i) spent nuclear fuel and alternative transmutation methods, (ii) general concept of accelerator-driven subcritical systems (ADSS), (iii) spallation neutron sources and the possibility of incineration, (iv) requirements for nuclear data, (v) transmutation of spent nuclear fuel and extension of the fuel cycle, (vi) spallation neutron production facilities, (vii) major experimental facilities for ADSS, and (viii) software tools for the design and modelling of ADSS. The book is ideally suited as a textbook for graduate students as well as a reference guide for researchers and practitioners.