Status of Hybrid Wing Body Community Noise Assessments


Book Description

The NASA Technical Reports Servcr (NTRS) houses half a million publications that are a valuable means of information to researchers, teachers, students, and the general public. These documents are all aerospace related with much scientific and technical information created or funded by NASA. Some types of documents include conference papers, research reports, meeting papers, journal articles and more. This is one of those documents.




Hybrid Wing-body Aircraft Noise and Performance Assessment


Book Description

Hybrid wing-body aircraft noise generation and boundary layer ingestion (BLI) performance trends with increased fan face Mach number inlet designs are investigated. The presented topics are in support of the NASA subsonic fixed wing project, which seeks to lower noise and increase performance by improving prediction methods and technologies. The aircraft configurations used for study are the N2A, using conventional podded engines, and the N2B, using an embedded propulsion system. Preliminary FAR Part 36 noise certification assessments are completed using the NASA Aircraft Noise Prediction Program (ANOPP). The limitations of applying current ANOPP noise prediction methods to hybrid wing-body aircraft are investigated. Improvements are made to the landing gear and airfoil self-noise modules, while a diffraction integral method is implemented in a companion thesis to enhance noise shielding estimates. The N2A overall takeoff and landing noise estimate is found to be 5.3 EPNdB higher than the N+2 goal. The dominant noise sources are the fan rearward and jet on takeoff and the main landing gear and elevons on approach. A lower fan pressure ratio and advanced landing gear fairings are recommended to decrease N2A overall noise levels. The available engine noise estimation tools were inadequate to model the N2B distributed propulsion system and rectangular exhaust nozzle; therefore, overall N2B aircraft noise results are presented for reference only. A simplified embedded propulsion system integration study is carried out to explore the N2B fan design space. A 2-D computational domain with contoured slip boundaries around the centerbody is used to replicate the effects of 3-D relief on the airframe and inlet aerodynamics. The domain includes the S-shaped inlet duct and is extended far downstream for a Trefftz plane power balance analysis to determine the propulsive power required for steady level flight. A fan actuator volume is included to couple the airframe external and the engine internal flows. Aircraft power savings, fan efficiency, and boundary layer thickness trends are examined to determine if increasing fan face Mach number improves system performance while mitigating the total pressure distortion risk of boundary layer ingestion. A fan face Mach number near 0.7 is found to increase aircraft power savings 12% relative to the baseline design and to reduce centerbody boundary layer kinetic energy thickness by 4.7%. In addition, power balances at lower fan pressure ratios as fan face Mach number increases suggesting that high-flow low pressure ratio fans are desirable for BLI.




Fundamentals of Electric Aircraft


Book Description

Fundamentals of Electric Aircraft was developed to explain what the electric aircraft stands for by offering an objective view of what can be expected from the giant strides in innovative architectures and technologies enabling aircraft electrification. Through tangible case studies, a deep insight is provided into this paradigm shift cutting across various aircraft segments – from General Aviation to Large Aircraft. Addressing design constraints and timelines foreseen to reach acceptable performance and maturity levels, Fundamentals of Electric Aircraft puts forward a general view of the progress made to date and what to expect in the years to come. Drawing from the expertise of four industry veterans, Pascal Thalin (editor), Ravi Rajamani, Jean-Charles Mare and Sven Taubert (contributors), it addresses futuristic approaches but does not depart too far from the operational down-to-earth realities of everyday business. Fundamentals of Electric Aircraft also offers analyses on how performance enhancements and fuel burn savings may bring more value for money as long as new electric technologies deliver on their promises.










Aviation Noise Impact Management


Book Description

This open access book provides a view into the state-of-the-art research on aviation noise and related annoyance. The book will primarily focus on the achievements of the ANIMA project (Aviation Noise Impact Management through Novel Approaches), but not exclusively. The content has a broader theme in order to encompass. regulation issues, the ICAO (International Civil Aviation Organization) balanced approach, progresses made on technologies and reduction of noise at source, impact of possible future civil supersonic aircraft, land-use planning issues, as well as the core topics of the ANIMA project, i.e. impact on human beings, annoyance, quality of life, health and findings of the project in this respect. This book differs from traditional research programmes on aviation noise as the authors endeavour, not to lower noise at source, but to reduce the annoyance. This book examines these non-acoustic factors in an effort to help those most affected by aviation noise – communities living close to airports, and also help airport managers, policy-makers, local authorities and researchers to deal with this issue holistically. The book concludes with some recommendations for EU, national and local policy-makers, airport and aviation authorities, and more broadly a scientifically literate audience. These recommendations may help to identify gaps for progress in terms of research but also genuine implementation actions for political and regulatory authorities.




Green Aviation


Book Description

Green Aviation is the first authoritative overview of both engineering and operational measures to mitigate the environmental impact of aviation. It addresses the current status of measures to reduce the environmental impact of air travel. The chapters cover such items as: Engineering and technology-related subjects (aerodynamics, engines, fuels, structures, etc.), Operations (air traffic management and infrastructure) Policy and regulatory aspects regarding atmospheric and noise pollution. With contributions from leading experts, this volume is intended to be a valuable addition, and useful resource, for aerospace manufacturers and suppliers, governmental and industrial aerospace research establishments, airline and aviation industries, university engineering and science departments, and industry analysts, consultants, and researchers.







Experimental and Applied Mechanics, Volume 4


Book Description

Experimental and Applied Mechanics, Volume 4 of the Proceedings of the 2015SEM Annual Conference& Exposition on Experimental and Applied Mechanics, the fourth volume of nine from the Conference, brings together contributions to important areas of research and engineering. The collection presents early findings and case studies on a wide range of topics, including: Advanced Methods for Frontier Applications, Non-Homogeneous Parameters Identification, Teaching Experimental Mechanics in the 21st Century, Material Characterization and Testing, Mechanics of Interfaces Novel Applications of Experimental Mechanics




Aeronautics and Astronautics


Book Description

These conference proceedings present 165 papers in all scientific and aerospace engineering fields, including materials and structures, aerodynamics and fluid dynamics, propulsion, aerospace systems, flight mechanics and control, space systems, and missions. Keywords: Aerospace Shell Structures, MCAST's Aerospace Program, Sandwich Structures, Thermal Buckling, Simulation of Elastodynamic Problems. Statically Deflected Beam, Meshes with Arbitrary Polygons, Variable Stiffness Composite Panels, Mechanical Response of Composites, 3D Printing Technique, Hygrothermal Effects in Composite Materials, Freeze-Thaw Cycling, Polymer Matrices, Morphing Aileron, Thermo-Elastic Homogenization of Polycrystals, Flutter Instability in Elastic Structures, Adaptive Composite Wings, Cylindrical IGA Patches, TRAC Longerons, Structural Damage Detection, Fatigue Behavior of Stiffened Composite Components, Redesign of Composite Fuselage Barrel Components, Damage Modelling of Metallic Lattice Materials, Ceramic Matrix Composites, Peridynamics Elastoplastic Model, Structural Batteries Challenges. Dynamic Buckling Structural Test, Delamination Identification on Composites Panels. CubeSat Radiative Surface, Wind Tunnel Testing.