Stochastic Dynamics and Energetics of Biomolecular Systems


Book Description

This thesis both broadens and deepens our understanding of the Brownian world. It addresses new problems in diffusion theory that have recently attracted considerable attention, both from the side of nanotechnology and from the viewpoint of pure academic research. The author focusses on the difussion of interacting particles in restricted geometries and under externally controlled forces. These geometries serve, for example, to model ion transport through narrow channels in cell membranes or a Brownian particle diffusing in an optical trap, now a paradigm for both theory and experiment. The work is exceptional in obtaining explicit analytically formulated answers to such realistic, experimentally relevant questions. At the same time, with its detailed exposition of the problems and a complete set of references, it presents a clear and broadly accessible introduction to the domain. Many of the problem settings and the corresponding exact asymptotic laws are completely new in diffusion theory.




Computational Modeling And Simulations Of Biomolecular Systems


Book Description

This textbook originated from the course 'Simulation, Modeling, and Computations in Biophysics' that I have taught at the University of Chicago since 2011. The students typically came from a wide range of backgrounds, including biology, physics, chemistry, biochemistry, and mathematics, and the course was intentionally adapted for senior undergraduate students and graduate students. This is not a highly technical book dedicated to specialists. The objective is to provide a broad survey from the physical description of a complex molecular system at the most fundamental level, to the type of phenomenological models commonly used to represent the function of large biological macromolecular machines.The key conceptual elements serving as building blocks in the formulation of different levels of approximations are introduced along the way, aiming to clarify as much as possible how they are interrelated. The only assumption is a basic familiarity with simple mathematics (calculus and integrals, ordinary differential equations, matrix linear algebra, and Fourier-Laplace transforms).




Biomolecular Feedback Systems


Book Description

This book provides an accessible introduction to the principles and tools for modeling, analyzing, and synthesizing biomolecular systems. It begins with modeling tools such as reaction-rate equations, reduced-order models, stochastic models, and specific models of important core processes. It then describes in detail the control and dynamical systems tools used to analyze these models. These include tools for analyzing stability of equilibria, limit cycles, robustness, and parameter uncertainty. Modeling and analysis techniques are then applied to design examples from both natural systems and synthetic biomolecular circuits. In addition, this comprehensive book addresses the problem of modular composition of synthetic circuits, the tools for analyzing the extent of modularity, and the design techniques for ensuring modular behavior. It also looks at design trade-offs, focusing on perturbations due to noise and competition for shared cellular resources. Featuring numerous exercises and illustrations throughout, Biomolecular Feedback Systems is the ideal textbook for advanced undergraduates and graduate students. For researchers, it can also serve as a self-contained reference on the feedback control techniques that can be applied to biomolecular systems. Provides a user-friendly introduction to essential concepts, tools, and applications Covers the most commonly used modeling methods Addresses the modular design problem for biomolecular systems Uses design examples from both natural systems and synthetic circuits Solutions manual (available only to professors at press.princeton.edu) An online illustration package is available to professors at press.princeton.edu




Computational Molecular Dynamics: Challenges, Methods, Ideas


Book Description

On May 21-24, 1997 the Second International Symposium on Algorithms for Macromolecular Modelling was held at the Konrad Zuse Zentrum in Berlin. The event brought together computational scientists in fields like biochemistry, biophysics, physical chemistry, or statistical physics and numerical analysts as well as computer scientists working on the advancement of algorithms, for a total of over 120 participants from 19 countries. In the course of the symposium, the speakers agreed to produce a representative volume that combines survey articles and original papers (all refereed) to give an impression of the present state of the art of Molecular Dynamics. The 29 articles of the book reflect the main topics of the Berlin meeting which were i) Conformational Dynamics, ii) Thermodynamic Modelling, iii) Advanced Time-Stepping Algorithms, iv) Quantum-Classical Simulations and Fast Force Field and v) Fast Force Field Evaluation.




Coarse-Graining of Condensed Phase and Biomolecular Systems


Book Description

Exploring recent developments in the field, Coarse-Graining of Condensed Phase and Biomolecular Systems examines systematic ways of constructing coarse-grained representations for complex systems. It explains how this approach can be used in the simulation and modeling of condensed phase and biomolecular systems. Assembling some of the most influential, world-renowned researchers in the field, this book covers the latest developments in the coarse-grained molecular dynamics simulation and modeling of condensed phase and biomolecular systems. Each chapter focuses on specific examples of evolving coarse-graining methodologies and presents results for a variety of complex systems. The contributors discuss the minimalist, inversion, and multiscale approaches to coarse-graining, along with the emerging challenges of coarse-graining. They also connect atomic-level information with new coarse-grained representations of complex systems, such as lipid bilayers, proteins, peptides, and DNA.




Dynamic Systems Biology Modeling and Simulation


Book Description

Dynamic Systems Biology Modeling and Simuation consolidates and unifies classical and contemporary multiscale methodologies for mathematical modeling and computer simulation of dynamic biological systems – from molecular/cellular, organ-system, on up to population levels. The book pedagogy is developed as a well-annotated, systematic tutorial – with clearly spelled-out and unified nomenclature – derived from the author's own modeling efforts, publications and teaching over half a century. Ambiguities in some concepts and tools are clarified and others are rendered more accessible and practical. The latter include novel qualitative theory and methodologies for recognizing dynamical signatures in data using structural (multicompartmental and network) models and graph theory; and analyzing structural and measurement (data) models for quantification feasibility. The level is basic-to-intermediate, with much emphasis on biomodeling from real biodata, for use in real applications. - Introductory coverage of core mathematical concepts such as linear and nonlinear differential and difference equations, Laplace transforms, linear algebra, probability, statistics and stochastics topics - The pertinent biology, biochemistry, biophysics or pharmacology for modeling are provided, to support understanding the amalgam of "math modeling with life sciences - Strong emphasis on quantifying as well as building and analyzing biomodels: includes methodology and computational tools for parameter identifiability and sensitivity analysis; parameter estimation from real data; model distinguishability and simplification; and practical bioexperiment design and optimization - Companion website provides solutions and program code for examples and exercises using Matlab, Simulink, VisSim, SimBiology, SAAMII, AMIGO, Copasi and SBML-coded models - A full set of PowerPoint slides are available from the author for teaching from his textbook. He uses them to teach a 10 week quarter upper division course at UCLA, which meets twice a week, so there are 20 lectures. They can easily be augmented or stretched for a 15 week semester course - Importantly, the slides are editable, so they can be readily adapted to a lecturer's personal style and course content needs. The lectures are based on excerpts from 12 of the first 13 chapters of DSBMS. They are designed to highlight the key course material, as a study guide and structure for students following the full text content - The complete PowerPoint slide package (~25 MB) can be obtained by instructors (or prospective instructors) by emailing the author directly, at: [email protected]




Biomolecular Simulations in Structure-Based Drug Discovery


Book Description

A guide to applying the power of modern simulation tools to better drug design Biomolecular Simulations in Structure-based Drug Discovery offers an up-to-date and comprehensive review of modern simulation tools and their applications in real-life drug discovery, for better and quicker results in structure-based drug design. The authors describe common tools used in the biomolecular simulation of drugs and their targets and offer an analysis of the accuracy of the predictions. They also show how to integrate modeling with other experimental data. Filled with numerous case studies from different therapeutic fields, the book helps professionals to quickly adopt these new methods for their current projects. Experts from the pharmaceutical industry and academic institutions present real-life examples for important target classes such as GPCRs, ion channels and amyloids as well as for common challenges in structure-based drug discovery. Biomolecular Simulations in Structure-based Drug Discovery is an important resource that: -Contains a review of the current generation of biomolecular simulation tools that have the robustness and speed that allows them to be used as routine tools by non-specialists -Includes information on the novel methods and strategies for the modeling of drug-target interactions within the framework of real-life drug discovery and development -Offers numerous illustrative case studies from a wide-range of therapeutic fields -Presents an application-oriented reference that is ideal for those working in the various fields Written for medicinal chemists, professionals in the pharmaceutical industry, and pharmaceutical chemists, Biomolecular Simulations in Structure-based Drug Discovery is a comprehensive resource to modern simulation tools that complement and have the potential to complement or replace laboratory assays for better results in drug design.




Dynamics, Structure, and Function of Biological Macromolecules


Book Description

A collection of articles looking at modern structural biology, summarizing the applications of physical methods - such as x-ray diffraction, high resolution nuclear magnetic resonance and molecular dynamics - to the study of protein structure and dynamics. There is a review of contemporary thoughts within the field, looking at the mechanisms of alloateric transitions and allosteric control, the transmission of information within protein structures and the role of dynamics in determining the specificity of protein - ligand interactions. There is also a look at future innovations.




Compendium of Biophysics


Book Description

The most thorough coverage of biophysics available, in a handy, easy-to-read volume, perfect as a reference for experienced engineers or as a textbook for the novice. Following up on his first book, Fundamentals of Biophysics, the author, a well-known scientist in this area, builds on that foundation by offering the biologist or scientist an advanced, comprehensive coverage of biophysics. Structuring the book into four major parts, he thoroughly covers the biophysics of complex systems, such as the kinetics and thermodynamic processes of biological systems, in the first part. The second part is dedicated to molecular biophysics, such as biopolymers and proteins, and the third part is on the biophysics of membrane processes. The final part is on photobiological processes. This ambitious work is a must-have for the veteran biologist, scientist, or chemist working in this field, and for the novice or student, who is interested in learning about biophysics. It is an emerging field, becoming increasingly more important, the more we learn about and develop the science. No library on biophysics is complete without this text and its precursor, both available from Wiley-Scrivener.




Computer Simulation of Biomolecular Systems


Book Description

The third volume in the series on Computer Simulation of Biomolecular Systems continues with the format introduced in the first volume [1] and elaborated in the second volume [2]. The primary emphasis is on the methodological aspects of simulations, although there are some chapters that present the results obtained for specific systems of biological interest. The focus of this volume has changed somewhat since there are several chapters devoted to structure-based ligand design, which had only a single chapter in the second volume. It seems useful to set the stage for this volume by quoting from my preface to Volume 2 [2]. "The long-range 'goal of molecular approaches to biology is to describe living systems in terms of chemistry and physics. Over the last fifty years great progress has been made in applying the equations representing the underlying physical laws to chemical problems involv ing the structures and reactions of small molecules. Corresponding studies of mesoscopic systems have been undertaken much more recently. Molecular dynamics simulations, which are the primary focus of this volume, represent the most important theoretical approach to macromolecules of biological interest." ...