Stochastic Project Networks


Book Description

Project planning, scheduling, and control are regularly used in business and the service sector of an economy to accomplish outcomes with limited resources under critical time constraints. To aid in solving these problems, network-based planning methods have been developed that now exist in a wide variety of forms, cf. Elmaghraby (1977) and Moder et al. (1983). The so-called "classical" project networks, which are used in the network techniques CPM and PERT and which represent acyclic weighted directed graphs, are able to describe only projects whose evolution in time is uniquely specified in advance. Here every event of the project is realized exactly once during a single project execution and it is not possible to return to activities previously carried out (that is, no feedback is permitted). Many practical projects, however, do not meet those conditions. Consider, for example, a production process where some parts produced by a machine may be poorly manufactured. If an inspection shows that a part does not conform to certain specifications, it must be repaired or replaced by a new item. This means that we have to return to a preceding stage of the production process. In other words, there is feedback. Note that the result of the inspection is that a certain percentage of the parts tested do not conform. That is, there is a positive probability (strictly less than 1) that any part is defective.




Stochastic Project Networks


Book Description




Advances in Project Scheduling


Book Description

This multi-author volume, containing contributions from international experts in the field, presents recent developments in project scheduling for both theory and practice. It is organized in three parts: I. Basic deterministic models; II. Special deterministic models; III. Stochastic models. A variety of approaches is presented dealing with multiple-category resource constraints, different mathematical models of activities, and various project performance measures in single and multiobjective formulation. Exact and heuristic algorithms are presented for both deterministic and stochastic project description.The volume will be of special interest to scientists, students, decision makers, executive managers, consultants and practitioners involved in systems management or operations research, in particular in business, engineering, and finance, but also in other areas of pure and applied sciences.




Handbook on Project Management and Scheduling Vol. 2


Book Description

Due to the increasing importance of product differentiation and collapsing product life cycles, a growing number of value-adding activities in the industry and service sector are organized in projects. Projects come in many forms, often taking considerable time and consuming a large amount of resources. The management and scheduling of projects represents a challenging task and project performance may have a considerable impact on an organization's competitiveness. This handbook presents state-of-the-art approaches to project management and scheduling. More than sixty contributions written by leading experts in the field provide an authoritative survey of recent developments. The book serves as a comprehensive reference, both, for researchers and project management professionals. The handbook consists of two volumes. Volume 1 is devoted to single-modal and multi-modal project scheduling. Volume 2 presents multi-project problems, project scheduling under uncertainty and vagueness, managerial approaches and a separate part on applications, case studies and information systems.







Network Traffic Engineering


Book Description

A comprehensive guide to the concepts and applications of queuing theory and traffic theory Network Traffic Engineering: Models and Applications provides an advanced level queuing theory guide for students with a strong mathematical background who are interested in analytic modeling and performance assessment of communication networks. The text begins with the basics of queueing theory before moving on to more advanced levels. The topics covered in the book are derived from the most cutting-edge research, project development, teaching activity, and discussions on the subject. They include applications of queuing and traffic theory in: LTE networks Wi-Fi networks Ad-hoc networks Automated vehicles Congestion control on the Internet The distinguished author seeks to show how insight into practical and real-world problems can be gained by means of quantitative modeling. Perfect for graduate students of computer engineering, computer science, telecommunication engineering, and electrical engineering, Network Traffic Engineering offers a supremely practical approach to a rapidly developing field of study and industry.




Deterministic and Stochastic Scheduling


Book Description

This volume contains the proceedings of an Advanced Study and Re search Institute on Theoretical Approaches to Scheduling Problems. The Institute was held in Durham, England, from July 6 to July 17, 1981. It was attended by 91 participants from fifteen different countries. The format of the Institute was somewhat unusual. The first eight of the ten available days were devoted to an Advanced Study Insti tute, with lectures on the state of the art with respect to deter ministic and stochastic scheduling models and on the interface between these two approaches. The last two days were occupied by an Advanced Research Institute, where recent results and promising directions for future research, especially in the interface area, were discussed. Altogether, 37 lectures were delivered by 24 lecturers. They have all contributed to these proceedings, the first part of which deals with the Advanced Study Institute and the second part of which covers the Advanced Research Institute. Each part is preceded by an introduction, written by the editors. While confessing to a natural bias as organizers, we believe that the Institute has been a rewarding and enjoyable event for everyone concerned. We are very grateful to all those who have contributed to its realization.




Essays in Production, Project Planning and Scheduling


Book Description

From the Preface: This festschrift is devoted to recognize the career of a man who not only witnessed the growth of operations research from its inception, but also contributed significantly to this growth. Dr. Salah E. Elmaghraby received his doctorate degree from Cornell University in 1958, and since then, his scholarly contributions have enriched the fields of production planning and scheduling and project scheduling. This collection of papers is contributed in his honor by his students, colleagues, and acquaintances. It offers a tribute to the inspiration received from his work, and from his guidance and advice over the years, and recognizes the legacy of his many contributions. Dr. Elmaghraby is a pioneer in the area of project scheduling (in particular, project planning and control through network models, for which he coined the term ‘activity networks’.) In his initial work in this area, he developed an algebra based on signal flow graphs and semi-Markov processes for analyzing generalized activity networks involving activities with probabilistic durations. This work led to the development of what was later known as the Graphical Evaluation and Review Technique (GERT), and GERT simulation models. He has made fundamental contributions in determining criticality indices for activities, in developing methodologies for project compression and time/cost analysis, and in the use of stochastic and chance-constrained programming and Petri Nets for the analysis of activity networks. This volume brings together fourteen contributions, which can be viewed under the following three main themes: operations research and its application in production planning; project scheduling, and production scheduling, inspired by, and in many cases based on, Dr. Elmaghraby’s work in these areas. The first five chapters are devoted to the first theme, followed by four chapters each devoted to the other two, respectively. An additional chapter is devoted to the vulnerability of multimodal freight systems.




Stochastic Algorithms: Foundations and Applications


Book Description

This book constitutes the refereed proceedings of the 5th International Symposium on Stochastic Algorithms, Foundations and Applications, SAGA 2009, held in Sapporo, Japan, in October 2009. The 15 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 22 submissions. The papers are organized in topical sections on learning, graphs, testing, optimization and caching, as well as stochastic algorithms in bioinformatics.




Network Design with Applications to Transportation and Logistics


Book Description

This book explores the methodological and application developments of network design in transportation and logistics. It identifies trends, challenges and research perspectives in network design for these areas. Network design is a major class of problems in operations research where network flow, combinatorial and mixed integer optimization meet. The analysis and planning of transportation and logistics systems continues to be one of the most important application areas of operations research. Networks provide the natural way of depicting such systems, so the optimal design and operation of networks is the main methodological area of operations research that is used for the analysis and planning of these systems. This book defines the current state of the art in the general area of network design, and then turns to its applications to transportation and logistics. New research challenges are addressed. Network Design with Applications to Transportation and Logistics is divided into three parts. Part I examines basic design problems including fixed-cost network design and parallel algorithms. After addressing the basics, Part II focuses on more advanced models. Chapters cover topics such as multi-facility network design, flow-constrained network design, and robust network design. Finally Part III is dedicated entirely to the potential application areas for network design. These areas range from rail networks, to city logistics, to energy transport. All of the chapters are written by leading researchers in the field, which should appeal to analysts and planners.