Stochastic Water Demand Modelling


Book Description

Water quality processes in the drinking water distribution network are strongly influenced by the flow velocity and residence time of the water in the network. In order to understand how the water quality changes in the drinking water distribution network, a good understanding of hydraulics is required. Specifically in the periphery of the network, where customers are connected, the hydraulics can change rapidly. During the night time the water is almost stagnant and the residence time increases. In the morning, when everybody gets up and flushes the toilet and takes a shower, high flow velocities can occur. During the remainder of the day flow velocities are low. The stochastic endues model SIMDEUM was developed to simulate water use on a small time scale (1 s) and small spatial scale (per fixture). SIMDEUM enables a good model of flow velocities, residence times and the connected water quality processes in the water distribution network. Stochastic Water Demand Modelling: Hydraulics in Water Distribution Networks describes the requirements of hydraulics in water quality modelling and provides insight into the development of detailed residential and non-residential water demand models. The book illustrates the use of detailed demand models in water quality models with respect to the variation in residence times and the relation with particle accumulation and resuspension. The models are compared to measurements in several real drinking water distribution networks.







Real-time Monitoring and Operational Control of Drinking-Water Systems


Book Description

This book presents a set of approaches for the real-time monitoring and control of drinking-water networks based on advanced information and communication technologies. It shows the reader how to achieve significant improvements in efficiency in terms of water use, energy consumption, water loss minimization, and water quality guarantees. The methods and approaches presented are illustrated and have been applied using real-life pilot demonstrations based on the drinking-water network in Barcelona, Spain. The proposed approaches and tools cover: • decision-making support for real-time optimal control of water transport networks, explaining how stochastic model predictive control algorithms that take explicit account of uncertainties associated with energy prices and real demand allow the main flow and pressure actuators—pumping stations and pressure regulation valves— and intermediate storage tanks to be operated to meet demand using the most sustainable types of source and with minimum electricity costs;• decision-making support for monitoring water balance and distribution network quality in real time, implementing fault detection and diagnosis techniques and using information from hundreds of flow, pressure, and water-quality sensors together with hydraulic and quality-parameter-evolution models to detect and locate leaks in the network, possible breaches in water quality, and failures in sensors and/or actuators;• consumer-demand prediction, based on smart metering techniques, producing detailed analyses and forecasts of consumption patterns, providing a customer communications service, and suggesting economic measures intended to promote more efficient use of water at the household level. Researchers and engineers working with drinking-water networks will find this a vital support in overcoming the problems associated with increased population, environmental sensitivities and regulation, aging infrastructures, energy requirements, and limited water sources.




Water Demand Forecasting


Book Description

This book is an outcome of the workshop on water demand forecasting in 1985. It summarises the 'state-of-the-art' in water demand forecasting, and identifies some of its links with environmental issues. The book discusses some of the issues raised in more detail and provides case studies.




Water Engineering Modeling and Mathematic Tools


Book Description

Water Engineering Modeling and Mathematic Tools provides an informative resource for practitioners who want to learn more about different techniques and models in water engineering and their practical applications and case studies. The book provides modelling theories in an easy-to-read format verified with on-site models for specific regions and scenarios. Users will find this to be a significant contribution to the development of mathematical tools, experimental techniques, and data-driven models that support modern-day water engineering applications. Civil engineers, industrialists, and water management experts should be familiar with advanced techniques that can be used to improve existing systems in water engineering. This book provides key ideas on recently developed machine learning methods and AI modelling. It will serve as a common platform for practitioners who need to become familiar with the latest developments of computational techniques in water engineering. - Includes firsthand experience about artificial intelligence models, utilizing case studies - Describes biological, physical and chemical techniques for the treatment of surface water, groundwater, sea water and rain/snow - Presents the application of new instruments in water engineering




Water Resource Systems Planning and Management


Book Description

This book is open access under a CC BY-NC 4.0 license. This revised, updated textbook presents a systems approach to the planning, management, and operation of water resources infrastructure in the environment. Previously published in 2005 by UNESCO and Deltares (Delft Hydraulics at the time), this new edition, written again with contributions from Jery R. Stedinger, Jozef P. M. Dijkman, and Monique T. Villars, is aimed equally at students and professionals. It introduces readers to the concept of viewing issues involving water resources as a system of multiple interacting components and scales. It offers guidelines for initiating and carrying out water resource system planning and management projects. It introduces alternative optimization, simulation, and statistical methods useful for project identification, design, siting, operation and evaluation and for studying post-planning issues. The authors cover both basin-wide and urban water issues and present ways of identifying and evaluating alternatives for addressing multiple-purpose and multi-objective water quantity and quality management challenges. Reinforced with cases studies, exercises, and media supplements throughout, the text is ideal for upper-level undergraduate and graduate courses in water resource planning and management as well as for practicing planners and engineers in the field.




An Introduction to Stochastic Modeling


Book Description

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.








Book Description




Water Demand Management


Book Description

A common characteristic of water demand in urban areas worldwide is its inexorable rise over many years; continued growth is projected over coming decades. The chief influencing factors are population growth and migration, together with changes in lifestyle, demographic structure and the possible effects of climate change (the detailed implications of climate change are not yet clear, and anyway will depend on global location, but must at least increase the uncertainty in security of supply). This is compounded by rapid development, creeping urbanization and, in some places, rising standards of living. Meeting this increasing demand from existing resources is self-evidently an uphill struggle, particularly in water stressed/scarce regions in the developed and developing world alike. There are typically two potential responses: either "supply-side" (meeting demand with new resources) or "demand-side" (managing consumptive demand itself to postpone or avoid the need to develop new resources). There is considerable pressure from the general public, regulatory agencies, and some governments to minimise the impacts of new supply projects (e.g. building new reservoirs or inter-regional transfer schemes), implying the emphasis should be shifted towards managing water demand by best utilising the water that is already available. Water Demand Management has been prepared by the academic, government and industry network WATERSAVE. The concept of the book is to assemble a comprehensive picture of demand management topics ranging from technical to social and legal aspects, through expert critical literature reviews. The depth and breadth of coverage is a unique contribution to the field and the book will be an invaluable information source for practitioners and researchers, including water utility engineers/planners, environmental regulators, equipment and service providers, and postgraduates. Contents Water consumption trends and demand forecasting techniques The technology, design and utility of rainwater catchment systems Understanding greywater treatment Water conservation products Water conservation and sewerage systems An introduction to life cycle and rebound effects in water systems Developing a strategy for managing losses in water distribution networks Demand management in developing countries Drivers and barriers for water conservation and reuse in the UK The economics of water demand management Legislation and regulation mandating and influencing the efficient use of water in England and Wales Consumer reactions to water conservation policy instruments Decision support tools for water demand management