Stress Analysis in Elastic Solids with Many Cracks


Book Description

To develop a new method of analysis of many cracks problems in elastic solids that is sufficiently simple and applicable to both two- and three dimensional configurations, and to apply it to a number of practically important problems involving multiple cracking. Such methods has been developed and its accuracy was verified by checking the results against the solutions available in the literature. The new method has been applied to solving a number of problems. Keywords: Stress analysis, Elastic solids, Crack problems, Multiple cracking.







On Wave Propagation in Elastic Solids with Cracks


Book Description

Begins with both a non-hypersingular time-domain traction boundary integral equation formulation for transient elastodynamic crack analysis and a time-stepping scheme for solving the boundary integral equations. The scheme is applied to analyze three-dimensional rectangular and penny-shaped cracks, and to investigate pulse shape effects on the dynamic stress intensity factor. The corresponding frequency-domain boundary integral equation is given, and time- harmonic wave propagation in randomly cracked solids is treated. The second half of the book deals with the elastodynamic analysis of a periodic array of cracks in plane strain and of anti-plane interface cracks between two different materials, and the effect of the material anistrophy on the near-tip quantities, the scattered far-field, and wave attenuation and dispersion. No index. Annotation copyrighted by Book News, Inc., Portland, OR




Linear and Non-Linear Deformations of Elastic Solids


Book Description

Linear and Non-Linear Deformations of Elastic Solids aims to compile the advances in the field of linear and non-linear elasticity through discussion of advanced topics. Broadly classified into two parts, it includes crack, contact, scattering and wave propagation in linear elastic solids and bending vibration, stability in non-linear elastic solids supported by MATLAB examples. This book is aimed at graduate students and researchers in applied mathematics, solid mechanics, applied mechanics, structural mechanics and includes comprehensive discussion of related analytical/numerical methods.




Three-dimensional Elastic Stress and Displacement Analysis of Finite Circular Geometry Solids Containing Cracks


Book Description

A seminumerical method is presented for solving a set of coupled partial differential equations subject to mixed and coupled boundary conditions. The use of this method is illustrated by obtaining solutions for two circular geometry and mixed boundary value problems in three-dimensional elasticity. Stress and displacement distributions are calculated in an axisymmetric, circular bar of finite dimensions containing a penny-shaped crack. Approximate results for an annular plate containing internal surface cracks are also presented.




Analysis of Concrete Structures by Fracture Mechanics


Book Description

This book presents the latest research findings of the fast developing applications of fracture mechanics to concrete structures. Key papers from leading experts in the field describe existing and new modelling techniques in the analysis of materials and structures. The book explains the practical application of fracture mechanics to structural modelling, bending, shear, bond and anchorage. The proceedings of this RILEM Workshop will be an important reference for those engaged in design, development, research and teaching in the field of concrete structures.










Weakening of an Elastic Solid by a Rectangular Array of Cracks


Book Description

An infinite elastic solid containing a doubly-periodic rectangular array of slit-like cracks is considered. The solid is subjected to a uniform stress resulting in a state of plane strain. The cracks are represented as suitable distributions of dislocations which are determined from a singular integral equation. This equation is solved numerically in an efficient manner using an expansion of the nonsingular part of the kernel in a series of Chebyshev polynomials. Values of the stress intensity factors are presented, as well as the change in strain energy due to the presence of the cracks. Also, the effective elastic constants of a sheet having a rectangular array of cracks are given as functions of the crack spacing. (Author).




Numerical Assessments of Cracks in Elastic-Plastic Materials


Book Description

In this book a systematic discussion of crack problems in elastic-plastic materials is presented. The state of the art in fracture mechanics research and assessment of cracks is documented, with the help of analytic, asymptotic methods as well as finite element computations. After a brief introduction to fracture mechanics, the two-parameter concept for stationary cracks is studied in addition to the issues in three-dimensional crack fields under coupling with strong out-of-plane effects. Cracks along interfaces and crack growth problems under mixed mode conditions are also treated. A systematic study of stress singularities for different notches is accompanied by detailed finite element computations.