Structural Analysis of Organic Compounds by Combined Application of Spectroscopic Methods


Book Description

Structural Analysis of Organic Compounds covers some practical analytical aspects of organic structural analysis by combined application of spectroscopic methods. This book is composed of three parts encompassing 35 chapters that specifically describe infrared-, ultraviolet-, proton and carbon-13 nuclear magnetic resonance and mass spectroscopy. Considerable chapters discuss the problems intended to cover a wide variety of chemical structure and spectroscopic argument, thereby exemplifying interpretations and comment on specific practical aspects of the problem solving procedure. The remaining chapters provide short supplementing research concerning various aspects of structural analysis. This book will prove useful to organic and analytical chemists.




Tables of Spectral Data for Structure Determination of Organic Compounds


Book Description

Although numerical data are, in principle, universal, the compilations presented in this book are extensively annotated and interleaved with text. This translation of the second German edition has been prepared to facilitate the use of this work, with all its valuable detail, by the large community of English-speaking scientists. Translation has also provided an opportunity to correct and revise the text, and to update the nomenclature. Fortunately, spectroscopic data and their relationship with structure do not change much with time so one can predict that this book will, for a long period of time, continue to be very useful to organic chemists involved in the identification of organic compounds or the elucidation of their structure. Klaus Biemann Cambridge, MA, April 1983 Preface to the First German Edition Making use of the information provided by various spectroscopic tech niques has become a matter of routine for the analytically oriented organic chemist. Those who have graduated recently received extensive training in these techniques as part of the curriculum while their older colleagues learned to use these methods by necessity. One can, therefore, assume that chemists are well versed in the proper choice of the methods suitable for the solution of a particular problem and to translate the experimental data into structural information.




Organic Structure Analysis


Book Description

"Organic Structure Analysis, Second Edition, is the only text that teaches students how to solve structures as they are solved in actual practice. Ideal for advanced undergraduate and graduate courses in organic structure analysis, organic structure identification, and organic spectroscopy, it emphasizes real applications-integrating theory as needed - and introduces students to the latest spectroscopic methods." --Book Jacket.







Computer Software Applications in Chemistry


Book Description

Intended specifically for practicing professionals and advanced students in chemistry and biochemistry, this invaluable book covers the full range of the computer applications in these fields, including numerical, nonnumerical, and graphics applications. New material includes multiple linear regression using MREG, principal-components analysis, Monte Carlo integration, parameterization of the force field, and molecular modeling software. Major areas covered include: * Error, Statistics, and the Floating-Point Number System * Curve Fitting * Multiple Linear Regression Analysis * Numerical Integration * Numerical Solution of Differential Equations * Matrix Methods and Linear Equation Systems * Random Numbers and Monte Carlo Simulation * Simplex Optimization * Chemical Structure Information Handling * Mathematical Graph Theory * Substructure Searching * Molecular Mechanics and Molecular Dynamics * Pattern Recognition * Artificial Intelligence and Expert Systems * Spectroscopic Library Searching and Structure Elucidation * Graphical Display of Data and of Molecules Whatever your area of research, this comprehensive, lucidly written book offers an indispensable resource of computer applications that will facilitate your work.




CRC Handbook of Basic Tables for Chemical Analysis


Book Description

Winner of an Oustanding Academic Title Award for 2011!Researchers in organic chemistry, chemical engineering, pharmaceutical science, forensics, and environmental science make routine use of chemical analysis, but the information these researchers need is often scattered in different sources and difficult to access. The CRC Handbook of Basic Tables




CRC Handbook of Fundamental Spectroscopic Correlation Charts


Book Description

From forensics and security to pharmaceuticals and environmental applications, spectroscopic detection is one of the most cost-effective methods for identifying chemical compounds in a wide range of disciplines. For spectroscopic information, correlation charts are far more easily used than tables, especially for scientists and students whose own a




Organic Spectroscopy


Book Description

Organic Spectroscopy presents the derivation of structural information from UV, IR, Raman, 1H NMR, 13C NMR, Mass and ESR spectral data in such a way that stimulates interest of students and researchers alike. The application of spectroscopy for structure determination and analysis has seen phenomenal growth and is now an integral part of Organic Chemistry courses. This book provides: -A logical, comprehensive, lucid and accurate presentation, thus making it easy to understand even through self-study; -Theoretical aspects of spectral techniques necessary for the interpretation of spectra; -Salient features of instrumentation involved in spectroscopic methods; -Useful spectral data in the form of tables, charts and figures; -Examples of spectra to familiarize the reader; -Many varied problems to help build competence ad confidence; -A separate chapter on ‘spectroscopic solutions of structural problems’ to emphasize the utility of spectroscopy. Organic Spectroscopy is an invaluable reference for the interpretation of various spectra. It can be used as a basic text for undergraduate and postgraduate students of spectroscopy as well as a practical resource by research chemists. The book will be of interest to chemists and analysts in academia and industry, especially those engaged in the synthesis and analysis of organic compounds including drugs, drug intermediates, agrochemicals, polymers and dyes.




Topics in Stereochemistry


Book Description

This seminal series, first edited by Ernest Eliel, responsible for some of the major advances in stereochemistry and the winner of the ACS Priestley Medal in 1996, provides coverage of the major developments of the field of stereochemistry. The scope of this series is broadly defined to encompass all fields of chemical and biological sciences that are founded on molecular and supramolecular interactions. Insofar as chemical, physical, and biological properties are determined by molecular shape and structure, the importance of stereochemistry is fundamental to and consequential for all natural sciences. Topics in Stereochemistry serves as a multidisciplinary series that enriches all of chemistry. Aimed at advanced students, university professors and teachers as well as researchers in pharmaceutical, agricultural, biotechnological, polymer, materials, and fine chemical industries, Topics in Stereochemistry publishes definitive and scholarly reviews in stereochemistry and has long been recognized as the gold standard reference work in this field. Covering the effect of chirality on all aspects of molecular interaction from the fundamental physical chemical properties of molecules and their molecular physics to the application of chirality in new areas such as its applications in materials science, Topics in Stereochemistry explores a wide variety of properties, both physical and chemical of isomers with a view to their applications in a number of disciplines from biochemistry to materials science.




Complex Mixtures


Book Description

In the laboratory, testing the toxic effects for a single compound is a straightforward process. However, many common harmful substances occur naturally as mixtures and can interact to exhibit greater toxic effects as a mixture than the individual components exhibit separately. Complex Mixtures addresses the problem of identifying and classifying complex mixtures, investigating the effect of exposure, and the research problems inherent in testing their toxicity to human beings. A complete series of case studies is presented, including one that examines the cofactors of alcohol consumption and cigarette smoke.