Structural Analysis-II, 4th Edition


Book Description

Structural analysis, or the 'theory of structures', is an important subject for civil engineering students who are required to analyse and design structures. It is a vast field and is largely taught at the undergraduate level. A few topics like matrix method and plastic analysis are also taught at the postgraduate level and in Structural Engineering electives. The entire course has been covered in two volumes—Structural Analysis-I and II. Structural Analysis-II deals in depth with the analysis of indeterminate structures, and also special topics like curved beams and unsymmetrical bending. It provides an introduction to advanced methods of analysis, namely, matrix method and plastic analysis. SALIENT FEATURES • Systematic explanation of concepts and underlying theory in each chapter • Numerous solved problems presented methodically • University examination questions solved in many chapters • A set of exercises to test the student's ability in solving them correctly NEW IN THE FOURTH EDITION • Thoroughly reworked computations • Objective type questions and review questions • A revamped summary for each chapter • Redrawing of some diagrams




Structural Analysis Vol II


Book Description




Structural Analysis-II, 5th Edition


Book Description

Structural analysis, or the 'theory of structures', is an important subject for civil engineering students who are required to analyse and design structures. It is a vast field and is largely taught at the undergraduate level. A few topics, such as matrix method and plastic analysis, are also taught at the postgraduate level and in structural engineering electives. The entire course has been covered in two volumes: Structural Analysis-I and Structural Analysis-II. Structural Analysis-II not only deals with the in-depth analysis of indeterminate structures but also special topics, such as curved beams and unsymmetrical bending. The book provides an introduction to advanced methods of analysis, namely, matrix method and plastic analysis.




Structural Analysis 2


Book Description

This book enables the student to master the methods of analysis of isostatic and hyperstatic structures. To show the performance of the methods of analysis of the hyperstatic structures, some beams, gantries and reticular structures are selected and subjected to a comparative study by the different methods of analysis of the hyperstatic structures. This procedure provides an insight into the methods of analysis of the structures.




Structural Analysis-I, 4th Edition


Book Description

Structural Analysis, or the ‘Theory of Structures’, is an important subject for civil engineering students who are required to analyze and design structures. It is a vast field and is largely taught at the undergraduate level. A few topics like Matrix Method and Plastic Analysis are also taught at the postgraduate level and in structural engineering electives. The entire course has been covered in two volumes – Structural Analysis I and II. Structural Analysis I deals with the basics of structural analysis, measurements of deflection, various types of deflection, loads and influence lines, etc.




Structural Analysis-I (Hard Bound)


Book Description




Structural Analysis-I, 5th Edition


Book Description

Structural Analysis, or the 'Theory of Structures', is an important subject for civil engineering students who are required to analyze and design structures. It is a vast field and is largely taught at the undergraduate level. A few topics like Matrix Method and Plastic Analysis are also taught at the postgraduate level and in structural engineering electives. The entire course has been covered in two volumes - Structural Analysis I and II. Structural Analysis I deals with the basics of structural analysis, measurements of deflection, various types of deflections, loads and influence lines, etc.




Structural Analysis with the Finite Element Method. Linear Statics


Book Description

STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 1 : The Basis and Solids Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM). The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume1 presents the basis of the FEM for structural analysis and a detailed description of the finite element formulation for axially loaded bars, plane elasticity problems, axisymmetric solids and general three dimensional solids. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems. The book includes a chapter on miscellaneous topics such as treatment of inclined supports, elastic foundations, stress smoothing, error estimation and adaptive mesh refinement techniques, among others. The text concludes with a chapter on the mesh generation and visualization of FEM results. The book will be useful for students approaching the finite element analysis of structures for the first time, as well as for practising engineers interested in the details of the formulation and performance of the different finite elements for practical structural analysis. STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 2: Beams, Plates and Shells Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM).The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume 2 presents a detailed description of the finite element formulation for analysis of slender and thick beams, thin and thick plates, folded plate structures, axisymmetric shells, general curved shells, prismatic structures and three dimensional beams. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems Emphasis is put on the treatment of structures with layered composite materials. The book will be useful for students approaching the finite element analysis of beam, plate and shell structures for the first time, as well as for practising engineers interested in the details of the formulation and performance of the different finite elements for practical structural analysis.




Structural Analysis


Book Description

This volume provides a concise, historical review of the methods of structural analysis and design - from Galileo in the seventeenth century, to the present day. Through it, students in structural engineering and professional engineers will gain a deeper understanding of the theory behind the modern software packages they use daily in structural design. This book also offers the reader a lucid examination of the process of structural analysis and how it relates to modern design. The first three chapters cover questions about the strength of materials, and how to calculate local effects. An account is then given of the development of the equations of elastic flexure and buckling, followed by a separate chapter on masonry arches. Three chapters on the overall behaviour of elastic structures lead to a discussion of plastic behaviour, and a final chapter indicates that there are still problems needing solution.




Advanced Methods of Structural Analysis


Book Description

This revised and significantly expanded edition contains a rigorous examination of key concepts, new chapters and discussions within existing chapters, and added reference materials in the appendix, while retaining its classroom-tested approach to helping readers navigate through the deep ideas, vast collection of the fundamental methods of structural analysis. The authors show how to undertake the numerous analytical methods used in structural analysis by focusing on the principal concepts, detailed procedures and results, as well as taking into account the advantages and disadvantages of each method and sphere of their effective application. The end result is a guide to mastering the many intricacies of the range of methods of structural analysis. The book differentiates itself by focusing on extended analysis of beams, plane and spatial trusses, frames, arches, cables and combined structures; extensive application of influence lines for analysis of structures; simple and effective procedures for computation of deflections; introduction to plastic analysis, stability, and free and forced vibration analysis, as well as some special topics. Ten years ago, Professor Igor A. Karnovsky and Olga Lebed crafted a must-read book. Now fully updated, expanded, and titled Advanced Methods of Structural Analysis (Strength, Stability, Vibration), the book is ideal for instructors, civil and structural engineers, as well as researches and graduate and post graduate students with an interest in perfecting structural analysis.