Structural Fire Performance of Contemporary Post-tensioned Concrete Construction


Book Description

This SpringerBrief equips readers to develop defensible fire safety designs for a range of concrete structures. It identifies current gaps in the research and provides a more complete understanding of the structural and thermal response of contemporary Post-tensioned (PT) concrete structures to fire. The brief includes chapters on contemporary construction using PT concrete, previous structural fire test research programs, recent research programs, real fire case studies, and current research needs. It explores the progression of PT concrete structures, looking at the sustainability and aesthetic benefits, the ongoing development of stronger concretes, and best practice guidance for improving safety in the event of fire. Designed for practitioners and researchers in fire engineering, this brief is a valuable tool for those studying the impact of fire on concrete, fire safety designs, and building safety optimization. Advanced-level students in civil engineering will also find the content useful.




Non-Destructive Diagnostics of Concrete Floors


Book Description

Concrete floors should be diagnosed in order to obtain the proper durability. Non-destructive testing (NDT) methods, which have numerous advantages and are very effective for in situ testing, are recommended for this purpose. Non-Destructive Diagnostics of Concrete Floors: Methods and Case Studies offers useful NDT methods, test methodologies, and case studies. This book contains classifications of NDT methods, examines their areas of usefulness in floor diagnostics, and explains the complementarity and reliability of NDT methods as well as the need to calibrate research equipment. It presents interesting case studies of concrete floors, such as dowelled floors, floors with a top layer made of stone slabs, industrial floors, industrial floors with a top layer of polyurethane-cement, layered floors, post-tensioned floors, and cement screeds. The authors have drawn on many years of experience in both academia and the practical diagnosis of concrete floors using NDT methods.




Structural Fire Resistance Experimental Research


Book Description

Structural Fire Resistance Experimental Research – Priority Needs of U.S. Industry provides a synthesis of stakeholder input to a prioritized agenda for research at the National Fire Research Laboratory (NFRL) at the National Institute of Standards and Technology (NIST) designed to accelerate the implementation of performance-based fire engineering for structures. The NFRL presents a broad range of unanswered questions regarding the performance of real structures in fire conditions, and informs performance-based design methods and standards in this field. The authors conducted a comprehensive literature review of large-scale structural fire testing and compiled research needs from a variety of sources. The book addresses major issues of broad concern in the fire community, such as real fire exposure and structural response, composite floor system performance, enhancing modeling performance, and understanding the embedded safety features in design methods. It concludes with a prioritized set of research recommendations for the NIST facility. The scope of issues addressed and broad range of content make this a valuable book for researchers in all aspects of fire resistance experimentation. It will also be useful for those who work with engineering standards for structures.




Proceedings of AWAM International Conference on Civil Engineering 2022—Volume 2


Book Description

This book gathers the latest research, innovations, and applications in the field of civil engineering, as presented by leading national and international academics, researchers, engineers, and postgraduate students at the AWAM International Conference on Civil Engineering 2022 (AICCE’22), held in Penang, Malaysia on February 15-17, 2022. The book covers highly diverse topics in the main fields of civil engineering, including structural and earthquake engineering, environmental engineering, geotechnical engineering, highway and transportation engineering, water resources engineering, and geomatic and construction management. In line with the conference theme, “Sustainability And Resiliency: Re-Engineering the Future”, which relates to the United Nations’ 17 Global Goals for Sustainable Development, it highlights important elements in the planning and development stages to establish design standards beneficial to the environment and its surroundings. The contributions introduce numerous exciting ideas that spur novel research directions and foster multidisciplinary collaborations between various specialists in the field of civil engineering. This book is part of a 3-volume series of these conference proceedings, it represents Volume 2 in the series.




Proceedings of the Canadian Society of Civil Engineering Annual Conference 2022


Book Description

This book comprises the proceedings of the Annual Conference of the Canadian Society of Civil Engineering 2022. The contents of this volume focus on specialty conferences in construction, environmental, hydrotechnical, materials, structures, transportation engineering, etc. This volume will prove a valuable resource for those in academia and industry.




Fire Safety Engineering Design of Structures, Second Edition


Book Description

An essential resource on the design and performance of common structural materials when they are exposed to fire.




International Handbook of Structural Fire Engineering


Book Description

This Handbook is focused on structural resilience in the event of fire. It serves as a single point of reference for practicing structural and fire protection engineers on the topic of structural fire safety. It is also stands as a key point of reference for university students engaged with structural fire engineering.







Structural Fire Engineering


Book Description

Actionable strategies for the design and construction of fire-resistant structures This hands-on guide clearly explains the complex building codes and standards that relate to fire design and presents hands-on techniques engineers can apply to prevent or mitigate the effects of fire in structures. Dedicated chapters discuss specific procedures for steel, concrete, and timber buildings. You will get step-by-step guidance on how to evaluate fire resistance using both testing and calculation methods. Structural Fire Engineering begins with an introduction to the behavioral aspects of fire and explains how structural materials react when exposed to elevated temperatures. From there, the book discusses the fire design aspects of key codes and standards, such as the International Building Code, the International Fire Code, and the NFPA Fire Code. Advanced topics are covered in complete detail, including residual capacity evaluation of fire damaged structures and fire design for bridges and tunnels. Explains the fire design requirements of the IBC, IFC, the NFPA Fire Code, and National Building Code of Canada Presents design strategies for steel, concrete, and timber structures as well as for bridges and tunnels Contains downloadable spreadsheets and problems along with solutions for instructors




Fire Design of Concrete Structures - Materials, Structures and Modelling


Book Description

Fire design of concrete structures has emerged in recent years as a high profile subject of great interest to both experts and the public. This has been largely prompted by severe damage to concrete in a number of recent tunnel fires, as well as a considerable amount of research and development that has taken place world-wide. fib Task Group 4.3, "Fire Design of Concrete Structures", therefore took the initiative to develop this bulletin in order to present the results of this international research to a wider group of concrete professionals. The report presents a general brief outline of the effect of fire on both concrete material and concrete structures, with emphasis placed on the important developments of the past few years, namely: (a) the increasing use of high strength concrete (HSC) in buildings, tunnels and bridges; (b) the growing acceptance of the use of performance based fire engineering calculations for the structural analysis and design against fire; (c) the problem of, and solutions to, explosive spalling; and (d) fires in tunnels. This report is not intended to be an exhaustive review of the effect of fire on concrete and concrete structures, nor to present a database of properties at high temperature. Instead, the main aims of this document are to present recent trends and developments, highlight key influencing factors, bring together the disparate but related issues in one short document, highlight the deficiencies in current practice and point to the future. The basic principles of performance based codes and fire engineering are also presented on the assumption that the reader is not a specialist in this field.