Smart Sensors for Structural Health Monitoring


Book Description

Smart sensors are technologies designed to facilitate the monitoring operations. For instance, power consumption can be minimized through on-board processing and smart interrogation algorithms, and state detection enhanced through collaboration between sensor nodes. Applied to structural health monitoring, smart sensors are key enablers of sparse and dense sensor networks capable of monitoring full-scale structures and components. They are also critical in empowering operators with decision making capabilities. The objective of this Special Issue is to generate discussions on the latest advances in research on smart sensing technologies for structural health monitoring applications, with a focus on decision-enabling systems. This Special Issue covers a wide range of related topics such as innovative sensors and sensing technologies for crack, displacement, and sudden event monitoring, sensor optimization, and novel sensor data processing algorithms for damage and defect detection, operational modal analysis, and system identification of a wide variety of structures (bridges, transmission line towers, high-speed trains, masonry light houses, etc.).




Structural Health Monitoring 2015


Book Description

Proceedings of the Tenth International Workshop on Structural Health Monitoring, September 1–3, 2015. Selected research on the entire spectrum of structural health techniques and areas of applicationAvailable in print, complete online text download or individual articles. Series book comprising two volumes provides selected international research on the entire spectrum of structural health monitoring techniques used to diagnose and safeguard aircraft, vehicles, buildings, civil infrastructure, ships and railroads, as well as their components such as joints, bondlines, coatings and more. Includes special sections on system design, signal processing, multifunctional materials, sensor distribution, embedded sensors for monitoring composites, reliability and applicability in extreme environments. The extensive contents can be viewed below.




Structural Health Monitoring


Book Description

This book is organized around the various sensing techniques used to achieve structural health monitoring. Its main focus is on sensors, signal and data reduction methods and inverse techniques, which enable the identification of the physical parameters, affected by the presence of the damage, on which a diagnostic is established. Structural Health Monitoring is not oriented by the type of applications or linked to special classes of problems, but rather presents broader families of techniques: vibration and modal analysis; optical fibre sensing; acousto-ultrasonics, using piezoelectric transducers; and electric and electromagnetic techniques. Each chapter has been written by specialists in the subject area who possess a broad range of practical experience. The book will be accessible to students and those new to the field, but the exhaustive overview of present research and development, as well as the numerous references provided, also make it required reading for experienced researchers and engineers.




Energy Scavenging for Wireless Sensor Networks


Book Description

The vast reduction in size and power consumption of CMOS circuitry has led to a large research effort based around the vision of wireless sensor networks. The proposed networks will be comprised of thousands of small wireless nodes that operate in a multi-hop fashion, replacing long transmission distances with many low power, low cost wireless devices. The result will be the creation of an intelligent environment responding to its inhabitants and ambient conditions. Wireless devices currently being designed and built for use in such environments typically run on batteries. However, as the networks increase in number and the devices decrease in size, the replacement of depleted batteries will not be practical. The cost of replacing batteries in a few devices that make up a small network about once per year is modest. However, the cost of replacing thousands of devices in a single building annually, some of which are in areas difficult to access, is simply not practical. Another approach would be to use a battery that is large enough to last the entire lifetime of the wireless sensor device. However, a battery large enough to last the lifetime of the device would dominate the overall system size and cost, and thus is not very attractive. Alternative methods of powering the devices that will make up the wireless networks are desperately needed.




New Trends in Vibration Based Structural Health Monitoring


Book Description

This book is a collection of articles covering the six lecture courses given at the CISM School on this topic in 2008. It features contributions by established international experts and offers a coherent and comprehensive overview of the state-of-the art research in the field, thus addressing both postgraduate students and researchers in aerospace, mechanical and civil engineering.




Structural Health Monitoring of Civil Infrastructure Systems


Book Description

Structural health monitoring is an extremely important methodology in evaluating the 'health' of a structure by assessing the level of deterioration and remaining service life of civil infrastructure systems. This book reviews key developments in research, technologies and applications in this area of civil engineering. It discusses ways of obtaining and analysing data, sensor technologies and methods of sensing changes in structural performance characteristics. It also discusses data transmission and the application of both individual technologies and entire systems to bridges and buildings.With its distinguished editors and international team of contributors, Structural health monitoring of civil infrastructure systems is a valuable reference for students in civil and structural engineering programs as well as those studying sensors, data analysis and transmission at universities. It will also be an important source for practicing civil engineers and designers, engineers and researchers developing sensors, network systems and methods of data transmission and analysis, policy makers, inspectors and those responsible for the safety and service life of civil infrastructure. - Reviews key developments in research, technologies and applications - Discusses systems used to obtain and analyse data and sensor technologies - Assesses methods of sensing changes in structural performance




Health Assessment of Engineered Structures


Book Description

This book covers some of the most recent developments and application potentials in structural health assessment for non-experts in the subject. Among topics addressed are sensor types, platforms and data conditioning for practical applications, wireless collection of sensor data, sensor power needs and on-site energy harvesting, long-term monitoring of structures, uncertainty in collected data, and future directions in structural health assessment.




Structural Health Monitoring of Large Civil Engineering Structures


Book Description

A critical review of key developments and latest advances in Structural Health Monitoring technologies applied to civil engineering structures, covering all aspects required for practical application Structural Health Monitoring (SHM) provides the facilities for in-service monitoring of structural performance and damage assessment, and is a key element of condition based maintenance and damage prognosis. This comprehensive book brings readers up to date on the most important changes and advancements in the structural health monitoring technologies applied to civil engineering structures. It covers all aspects required for such monitoring in the field, including sensors and networks, data acquisition and processing, damage detection techniques and damage prognostics techniques. The book also includes a number of case studies showing how the techniques can be applied in the development of sustainable and resilient civil infrastructure systems. Structural Health Monitoring of Large Civil Engineering Structures offers in-depth chapter coverage of: Sensors and Sensing Technology for Structural Monitoring; Data Acquisition, Transmission, and Management; Structural Damage Identification Techniques; Modal Analysis of Civil Engineering Structures; Finite Element Model Updating; Vibration Based Damage Identification Methods; Model Based Damage Assessment Methods; Monitoring Based Reliability Analysis and Damage Prognosis; and Applications of SHM Strategies to Large Civil Structures. Presents state-of-the-art SHM technologies allowing asset managers to evaluate structural performance and make rational decisions Covers all aspects required for the practical application of SHM Includes case studies that show how the techniques can be applied in practice Structural Health Monitoring of Large Civil Engineering Structures is an ideal book for practicing civil engineers, academics and postgraduate students studying civil and structural engineering.




Fibre Optic Methods for Structural Health Monitoring


Book Description

The use of fibre optic sensors in structural health monitoring has rapidly accelerated in recent years. By embedding fibre optic sensors in structures (e.g. buildings, bridges and pipelines) it is possible to obtain real time data on structural changes such as stress or strain. Engineers use monitoring data to detect deviations from a structure’s original design performance in order to optimise the operation, repair and maintenance of a structure over time. Fibre Optic Methods for Structural Health Monitoring is organised as a step-by-step guide to implementing a monitoring system and includes examples of common structures and their most-frequently monitored parameters. This book: presents a universal method for static structural health monitoring, using a technique with proven effectiveness in hundreds of applications worldwide; discusses a variety of different structures including buildings, bridges, dams, tunnels and pipelines; features case studies which describe common problems and offer solutions to those problems; provides advice on establishing mechanical parameters to monitor (including deformations, rotations and displacements) and on placing sensors to achieve monitoring objectives; identifies methods for interpreting data according to construction material and shows how to apply numerical concepts and formulae to data in order to inform decision making. Fibre Optic Methods for Structural Health Monitoring is an invaluable reference for practising engineers in the fields of civil, structural and geotechnical engineering. It will also be of interest to academics and undergraduate/graduate students studying civil and structural engineering.