Structural Health Monitoring of Bridges Using Wireless Sensor Networks


Book Description

Structural Health Monitoring, damage detection and localization of bridges using Wireless Sensor Networks (WSN) are studied in this thesis. The continuous monitoring of bridges to detect damage is a very useful tools for preventing unnecessary costly and emergent maintenance. The optimal design aims to maximize the lifetime of the system, the accuracy of the sensed data, and the system reliability, and to minimize the system cost and complexity Finite Element Analysis (FEA) is carried out using LUSAS Bridge Plus software to determine sensor locations and measurement types and effectively minimize the number of sensors, data for transmission, and volume of data for processing. In order to verify the computer simulation outputs and evaluate the proposed optimal design and algorithms, a WSN system mounted on a simple reinforced concrete frame model is employed in the lab. A series of tests are carried out on the reinforced concrete frame mounted on the shaking table in order to simulate the existing extreme loading condition. Experimental methods which are based on modal analysis under ambient vibrational excitation are often employed to detect structural damages of mechanical systems, many of such frequency domain methods as first step use a Fast Fourier Transform estimate of the Power Spectral Density (PSD) associated with the response of the system. In this study it is also shown that higher order statistical estimators such as Spectral Kurtosis (SK) and Sample to Model Ratio (SMR) may be successfully employed to more reliably discriminate the response of the system against the ambient noise and better identify and separate contributions from closely spaced individual modes. Subsequently, the identified modal parameters are used for damage detection and Structural Health Monitoring. To evaluate the preliminary results of the project's prototype and quantify the current bridge response as well as demonstrate the ability of the SHM system to successfully perform on a bridge, the deployment of Wireless Sensor Networks in an existing highway bridge in Qatar is implemented. The proposed technique will eventually be applied to the new stadium that State of Qatar will build in preparation for the 2022 World Cup. This monitoring system will help permanently record the vibration levels reached in all substructures during each event to evaluate the actual health state of the stadiums. This offers the opportunity to detect potentially dangerous situations before they become critical.




Structural Health Monitoring of a Bridge Structural Using Wireless Sensor Network


Book Description

Bridge Structural Health Monitoring (SHM) has rapidly become one of the main interests in the civil engineering field. An inexpensive and efficient SHM method utilizing Wireless Sensor Network (WSN) is helping to facilitate the selection of the bridges that require maintenance. The changes to structural properties (i.e. stiffness) caused by damage (i.e. corrosion) will change the structural responses (I.e. acceleration responses) to ambient motions. Modal analysis algorithms applied to the vibration responses acquired through WSN provide the modal properites (i.e. natural frequency, modal shape and damping ratio) that will change with the changes in stiffness indicating possible existence of damage. Three output-only modal analysis algorithms: Stochastic Subspace Identification (SSI), Auto-regressive Moving Average (ARMA) and Fast Fourier Transform (FFT) were evaluated based on their accuracy and efficiency in extracting modal properties using two case studies. FFT was found to be the most accurate and consistent algorithm. The extracted modal properties of the Holland Bridge agree with the ones obtained from the Finite Element (FE) bridge model. The extracted damping ratios from different algorithms were not consistent. Recommendations on future research in bridge SHM using WSN and modal analysis algorithms are provided.




Structural Health Monitoring for Bridge Structures Using Wireless Smart Sensors


Book Description

Structural health monitoring (SHM) has drawn significant attention in recent decades because of its potential to reduce maintenance costs and increase the reliability of structures. An important class of structures that can potentially benefit from SHM are bridges, many of which are structurally deficient due to lack of adequate maintenance. Through condition assessment of these bridges, an effective plan of maintenance can be determined, offering the possibility to prolong service life, as well as to prevent catastrophic disasters due to sudden collapse. To date, numerous damage detection algorithms have been proposed. Still, challenges remain in applying such algorithms to monitor bridges in the field. In reality, the extent of an SHM system is limited by available budgets, which define the number of sensors that can be deployed. This dissertation first presents a damage detection algorithm using static strain developed for efficient structural condition assessment with a few sensor nodes. A laboratory moving vehicle experiment has been developed for validation of the approach. However, just a few sensor nodes in SHM system cannot provide detailed information on damage location. A solution to include many sensors within a limited budget with increased efficiency is to use a Wireless Smart Sensor Network (WSSN) because of the merits of low cost, easy installation, and effective data management. An acceleration-based SHM algorithm for WSSN has been developed with a decentralized network topology. This approach has been implemented into a modularized damage detection service. The SHM application is designed to leverage the on-board computation capability of the WSSN, reducing the transmitted data size by distributing the computation burden. The SHM application for WSSN has been validated in lab-scale experiments on a truss bridge model. Nonetheless, the real challenge of SHM is in the deployment on full-scale bridges for continuous monitoring. The usability and stability of WSSN has been validated on an architectural staircase in the Siebel Center. Based on the usability investigation, the deployment of the world0́9s largest WSSN on the Jindo Bridge, a cable-stayed bridge has been achieved in South Korea. The main purpose of the deployment was to validate the bridge monitoring system using WSSN and energy harvesting devices in a long-term manner. The ultimate goal of this dissertation is to deploy the developed on-board decentralized damage identification application using WSSN on a historic truss bridge. As a first step, a series of dynamic tests were conducted for modal analysis using both wired and wireless sensor systems. During the tests, the functionality of the wireless sensor system with ISHMP Services Toolsuite was confirmed. For model-based damage identification approach developed herein, a finite element (FE) model was created. The initial FE model was updated based on a visual estimate of the corrosion. The updated model was used to generate baseline information for damage detection. Finally, the WSSN-based autonomous SHM system using the decentralized damage detection application was deployed on the historic bridge. The permanent SHM system was installed on the bridge, and the damage detection application was successfully run on the bridge. The damage detection results using the comprehensive application will be compared with those from the measured data. In summary, this dissertation provides a robust SHM system for bridge structures in use of WSSN. The decentralized damage detection approach is experimentally validated for WSSN. The performance of WSSN and energy harvesting devices will be evaluated.




The 4th International Workshop on Structural Control


Book Description

Presents the research and applications on sensing technologies to monitor and control the structure and health of buildings, bridges, installations, and other constructed facilities.




Structural Health Monitoring of Civil Infrastructure Systems


Book Description

Structural health monitoring is an extremely important methodology in evaluating the ‘health’ of a structure by assessing the level of deterioration and remaining service life of civil infrastructure systems. This book reviews key developments in research, technologies and applications in this area of civil engineering. It discusses ways of obtaining and analysing data, sensor technologies and methods of sensing changes in structural performance characteristics. It also discusses data transmission and the application of both individual technologies and entire systems to bridges and buildings. With its distinguished editors and international team of contributors, Structural health monitoring of civil infrastructure systems is a valuable reference for students in civil and structural engineering programs as well as those studying sensors, data analysis and transmission at universities. It will also be an important source for practicing civil engineers and designers, engineers and researchers developing sensors, network systems and methods of data transmission and analysis, policy makers, inspectors and those responsible for the safety and service life of civil infrastructure. Reviews key developments in research, technologies and applications Discusses systems used to obtain and analyse data and sensor technologies Assesses methods of sensing changes in structural performance




Wireless Sensor Networks for Structural Health Monitoring


Book Description

The gradual deterioration of bridges, buildings and other civil engineering structures invokes the need to develop structural health monitoring (SHM) systems to monitor the well-beings of structures. Dozens of wired sensing, processing and monitoring mechanisms have been implemented and widely deployed. However, they are complex to handle and expensive. Wireless sensor networks (WSNs), on the other hand, can easily be deployed with low-cost. But, care needs to be taken while designing data processing algorithms due to their computational limitations: low memory, power consumption, etc. In this book we implement an efficient solution for SHM using WSNs.




Mobile Radio Communications and 5G Networks


Book Description

The book features original papers by active researchers presented at the International Conference on Mobile Radio Communications and 5G Networks. It includes recent advances and upcoming technologies in the field of cellular systems, 2G/2.5G/3G/4G/5G and beyond, LTE, WiMAX, WMAN, and other emerging broadband wireless networks, WLAN, WPAN, and various home/personal networking technologies, pervasive and wearable computing and networking, small cells and femtocell networks, wireless mesh networks, vehicular wireless networks, cognitive radio networks and their applications, wireless multimedia networks, green wireless networks, standardization of emerging wireless technologies, power management and energy conservation techniques.




Health Assessment of Engineered Structures


Book Description

This book covers some of the most recent developments and application potentials in structural health assessment for non-experts in the subject. Among topics addressed are sensor types, platforms and data conditioning for practical applications, wireless collection of sensor data, sensor power needs and on-site energy harvesting, long-term monitoring of structures, uncertainty in collected data, and future directions in structural health assessment.




Structural Health Monitoring 2015


Book Description

Proceedings of the Tenth International Workshop on Structural Health Monitoring, September 1–3, 2015. Selected research on the entire spectrum of structural health techniques and areas of applicationAvailable in print, complete online text download or individual articles. Series book comprising two volumes provides selected international research on the entire spectrum of structural health monitoring techniques used to diagnose and safeguard aircraft, vehicles, buildings, civil infrastructure, ships and railroads, as well as their components such as joints, bondlines, coatings and more. Includes special sections on system design, signal processing, multifunctional materials, sensor distribution, embedded sensors for monitoring composites, reliability and applicability in extreme environments. The extensive contents can be viewed below.




Smart Sensors for Structural Health Monitoring


Book Description

Smart sensors are technologies designed to facilitate the monitoring operations. For instance, power consumption can be minimized through on-board processing and smart interrogation algorithms, and state detection enhanced through collaboration between sensor nodes. Applied to structural health monitoring, smart sensors are key enablers of sparse and dense sensor networks capable of monitoring full-scale structures and components. They are also critical in empowering operators with decision making capabilities. The objective of this Special Issue is to generate discussions on the latest advances in research on smart sensing technologies for structural health monitoring applications, with a focus on decision-enabling systems. This Special Issue covers a wide range of related topics such as innovative sensors and sensing technologies for crack, displacement, and sudden event monitoring, sensor optimization, and novel sensor data processing algorithms for damage and defect detection, operational modal analysis, and system identification of a wide variety of structures (bridges, transmission line towers, high-speed trains, masonry light houses, etc.).