The Fundamentals of Structural Integrity and Failure


Book Description

"The Fundamentals of Structural Integrity and Failure provides a comprehensive review of spent nuclear fuel integrity and the research work which has been carried out in the important area of spent nuclear fuel integrity management. Additionally, the authors review the key aspects of fatigue crack nucleation and the fracture mechanics of short- and long-crack growth, with emphasis on achieving total fatigue life prediction. The fundamental aspects of mathematical modeling, computation, measurement, and signal processing involved in the process of integrity assessment of engineering structures in the presence of uncertainty are presented. Following this, several proposed techniques for the detection of the defects in ferromagnetic steel components are analyzed. One of these possible approaches is based on the additional magnetization of the inspected zone to minimize magnetic heterogeneity, and another trend is concerned with new selective Eddy current probe development. The capabilities of nondestructive testing techniques based on coercive force measurements concerned with several new applications are discussed. This concluding work demonstrates the use of a judicious and effective method for detecting pressure vessel failures, applying Wiener filter concepts to noisy signals"--




Structural Integrity and Failure


Book Description

Structural integrity and failure assessment have been considered by many fields of engineers as it is a multi-disciplinary concept. The assessment procedure vitally ensures that structural elements will remain functional throughout their service lives. Structural failure refers to the loss of structural integrity by means of loss at the component- or system-level elements. The main concern of integrity assessment is that a structural failure may be avoided at the service level by designing the structure to withstand its designated loads. Hence, for satisfactory structural performance, structural safety, failure, and interaction between them should be considered throughout the design and analysis stages. This book is a collection of chapters that provide the researcher with a comprehensive perspective on structural integrity and its sub-disciplines.




Fundamentals of Structural Integrity


Book Description

Discusses applications of failures and evaluation techniques to a variety of industries. * Presents a unified approach using two key elements of structural design.




Structural and Failure Mechanics of Sandwich Composites


Book Description

"Structural and Failure Mechanics of Sandwich Composites" by Leif A. Carlsson and George A. Kardomateas focuses on some important deformation and failure modes of sandwich panels such as global buckling, wrinkling and local instabilities, and face/core debonding. The book also provides the mechanics background necessary for understanding deformation and failure mechanisms in sandwich panels and the response of sandwich structural parts to a variety of loadings. Specifically, first-order and high-order sandwich panel theories, and three-dimensional elasticity solutions for the structural behavior outlined in some detail. Elasticity analysis can serve as a benchmark for judging the accuracy of simplified sandwich plate, shell and beam theories. Furthermore, the book reviews test methods developed for the characterization of the constituent face and core materials, and sandwich beams and plates. The characterization of face/core debonding is a major topic of this text, and analysis methods based on fracture mechanics are described and applied to several contemporary test specimens. Test methods and results documented in the literature are included and discussed. The book will benefit structural and materials engineers and researchers with the desire to learn more about structural behavior, failure mechanisms, fracture mechanics and damage tolerance of sandwich structures.




Fracture, Fatigue and Structural Integrity of Metallic Materials


Book Description

Fracture, fatigue, and other subcritical processes, such as creep crack growth or stress corrosion cracking, present numerous open issues from both scientific and industrial points of view. These phenomena are of special interest in industrial and civil metallic structures, such as pipes, vessels, machinery, aircrafts, ship hulls, and bridges, given that their failure may imply catastrophic consequences for human life, the natural environment, and/or the economy. Moreover, an adequate management of their operational life, defining suitable inspection periods, repairs, or replacements, requires their safety or unsafety conditions to be defined. The analysis of these technological challenges requires accurate comprehensive assessment tools based on solid theoretical foundations as well as structural integrity assessment standards or procedures incorporating such tools into industrial practice.




Advances in Structural Integrity


Book Description

This book comprises the proceedings of the 3rd Structural Integrity Conference and Exhibition (SICE 2020). The contents of the volume focus on structural integrity, life prediction, and condition monitoring which are reclassified under the domains of aerospace, fracture mechanics, fatigue, creep-fatigue interactions, civil structures, experimental techniques, computation mechanics, structural health monitoring, nondestructive testing, failure analysis, materials processing, stress corrosion cracking, reliability and risk analysis. This book will be a useful reference for students, researchers and practitioners.




Structural Integrity Assessment


Book Description

The assessment of structural integrity is a vitally important consideration in many fields of engineering, which has an influence on the full range of professional activities from conception, design and analysis, through operation to residual life evaluation and possible life extension. In devising satisfactory procedures for this purpose there is




Fractography and Failure Analysis


Book Description

This book presents fractography and failure analysis at a level that is accessible for non-expert readers, without losing scientific rigor. It offers a comprehensive description of fracture surfaces in engineering materials, with an emphasis on metals, and of the methodology for the observation of fracture surfaces. It also discusses in detail the main fracture mechanisms and their corresponding fracture surfaces, including brittle, ductile, fatigue, and environmental fractures. The last chapter is dedicated to the use of fractography in determining of the causes component failure. In modern engineering, the analysis of fractured components is a common practice in many fields, such as integrity management systems, materials science research, and failure investigations. As such this book is useful for engineers, scientists, engineering students, loss adjuster surveyors and any professional dealing with fractured components.




Damage and Fracture Mechanics


Book Description

The First African InterQuadrennial ICF Conference “AIQ-ICF2008” on Damage and Fracture Mechanics – Failure Analysis of Engineering Materials and Structures”, Algiers, Algeria, June 1–5, 2008 is the first in the series of InterQuadrennial Conferences on Fracture to be held in the continent of Africa. During the conference, African researchers have shown that they merit a strong reputation in international circles and continue to make substantial contributions to the field of fracture mechanics. As in most countries, the research effort in Africa is und- taken at the industrial, academic, private sector and governmental levels, and covers the whole spectrum of fracture and fatigue. The AIQ-ICF2008 has brought together researchers and engineers to review and discuss advances in the development of methods and approaches on Damage and Fracture Mechanics. By bringing together the leading international experts in the field, AIQ-ICF promotes technology transfer and provides a forum for industry and researchers of the host nation to present their accomplishments and to develop new ideas at the highest level. International Conferences have an important role to play in the technology transfer process, especially in terms of the relationships to be established between the participants and the informal exchange of ideas that this ICF offers.




Principles of Loads and Failure Mechanisms


Book Description

Failure of components or systems must be prevented by both designers and operators of systems, but knowledge of the underlying mechanisms is often lacking. Since the relation between the expected usage of a system and its failure behavior is unknown, unexpected failures often occur, with possibly serious financial and safety consequences. Principles of Loads and Failure Mechanisms. Applications in Maintenance, Reliability and Design provides a complete overview of all relevant failure mechanisms, ranging from mechanical failures like fatigue and creep to corrosion and electric failures. Both qualitative and quantitative descriptions of the mechanisms and their governing loads enable a solid assessment of a system’s reliability in a given or assumed operational context. Moreover, a unique range of applications of this knowledge in the fields of maintenance, reliability and design are presented. The benefits of understanding the physics of failure are demonstrated for subjects like condition monitoring, predictive maintenance, prognostics and health management, failure analysis and reliability engineering. Finally, the role of these mechanisms in design processes and design for maintenance are illustrated.