Structure and Crystallization of Glasses


Book Description

Structure and Crystallization of Glasses details glass structural analysis from an experimental perspective. The book is comprised of eight chapters that cover various structural concepts. The text first introduces the basic elements of glass structures, and then proceeds to discussing the development of classical structure theories. The next chapter presents research that deals with structure of prototype and original glasses. Next, the book details the position of the structural conceptions resulting from the studies. Chapter 5 talks about the crystallization behavior of glasses according to the classical studies of G. Tammann and their development. Chapter 6 deals with the effects of the composition of glass on the resulting form of a crystal phase in the course of growth. The seventh chapter discusses the microphases in glass and their relations to crystallization, and the last chapter details the directed crystallization in glass. The text will be of great use to individuals involved in the research, development, and application of glass technology, such as materials engineers and inorganic chemists.







The Vitreous State


Book Description

The present book is devoted to problems of a physically important state of condensed matter - the vitreous state. We tried to summarize here the experimental evidence and the different theoretical approaches - structural, thermodynamic and those of statistical physics - connected with the formation, the kinetic stability and with the general nature of glasses as a particular physical state. In addition, a summary is given on the information available concerning proces ses of nucleation and crystallization of glass-forming systems, on methods of preventing or, in contrast, catalyzing crystallization in vitrifying liquids, on the kinetics of nucleation, the modes of crystal growth in undercooled melts and the devitrification of glasses. It was our aim to summarize in the present volume the basic principles and the most significant developments of a newly emerging science - glass science - and to show that, at least, in principle, any substance can exist in the vitreous state. Moreover, we have tried to demonstrate that the characteristic properties of the vitreous state may be attributed under certain conditions not only to systems with an amorphous structure (like the common glasses) but also to a number of other states of condensed matter including the crystalline one.




Introduction to Glass Science and Technology


Book Description

This book provides a concise and inexpensive introduction for an undergraduate course in glass science and technology. The level of the book has deliberately been maintained at the introductory level to avoid confusion of the student by inclusion of more advanced material, and is unique in that its text is limited to the amount suitable for a one term course for students in materials science, ceramics or inorganic chemistry. The contents cover the fundamental topics of importance in glass science and technology, including glass formation, crystallization, phase separation and structure of glasses. Additional chapters discuss the most important properties of glasses, including discussion of physical, optical, electrical, chemical and mechanical properties. A final chapter provides an introduction to a number of methods used to form technical glasses, including glass sheet, bottles, insulation fibre, optical fibres and other common commercial products. In addition, the book contains discussion of the effects of phase separation and crystallization on the properties of glasses, which is neglected in other texts. Although intended primarily as a textbook, Introduction to Glass Science and Technology will also be invaluable to the engineer or scientist who desires more knowledge regarding the formation, properties and production of glass.




Glass


Book Description

“This book contains overviews on technologically important classes of glasses, their treatment to achieve desired properties, theoretical approaches for the description of structure-property relationships, and new concepts in the theoretical treatment of crystallization in glass-forming systems. It contains overviews about the state of the art and about specific features for the analysis and application of important classes of glass-forming systems, and describes new developments in theoretical interpretation by well-known glass scientists. Thus, the book offers comprehensive and abundant information that is difficult to come by or has not yet been made public.” Edgar Dutra Zanotto (Center for Research, Technology and Education in Vitreous Materials, Brazil) Glass, written by a team of renowned researchers and experienced book authors in the field, presents general features of glasses and glass transitions. Different classes of glassforming systems, such as silicate glasses, metallic glasses, and polymers, are exemplified. In addition, the wide field of phase formation processes and their effect on glasses and their properties is studied both from a theoretical and experimental point of view.




Glass


Book Description

“This book contains overviews on technologically important classes of glasses, their treatment to achieve desired properties, theoretical approaches for the description of structure-property relationships, and new concepts in the theoretical treatment of crystallization in glass-forming systems. It contains overviews about the state of the art and about specific features for the analysis and application of important classes of glass-forming systems, and describes new developments in theoretical interpretation by well-known glass scientists. Thus, the book offers comprehensive and abundant information that is difficult to come by or has not yet been made public.” Edgar Dutra Zanotto (Center for Research, Technology and Education in Vitreous Materials, Brazil) Glass, written by a team of renowned researchers and experienced book authors in the field, presents general features of glasses and glass transitions. Different classes of glassforming systems, such as silicate glasses, metallic glasses, and polymers, are exemplified. In addition, the wide field of phase formation processes and their effect on glasses and their properties is studied both from a theoretical and experimental point of view.







Nucleation


Book Description

This book represents a detailed and systematic account of the basic principles, developments and applications of the theory of nucleation. The formation of new phases begins with the process of nucleation and is, therefore, a widely spread phenomenon in both nature and technology. Condensation and evaporation, crystal growth, electrodeposition, melt crystallization, growth of thin films for microelectronics, volcano eruption and formation of particulate matter in space are only a few of the processes in which nucleation plays a prominent role. The book has four parts, which are devoted to the thermodynamics of nucleation, the kinetics of nucleation, the effect of various factors on nucleation and the application of the theory to other processes, which involve nucleation. The first two parts describe in detail the two basic approaches in nucleation theory - the thermodynamic and the kinetic ones. They contain derivations of the basic and most important formulae of the theory and discuss their limitations and possibilities for improvement. The third part deals with some of the factors that can affect nucleation and is a natural continuation of the first two chapters. The last part is devoted to the application of the theory to processes of practical importance such as melt crystallization and polymorphic transformation, crystal growth and growth of thin solid films, size distribution of droplets and crystallites in condensation and crystallization. The book is not just an account of the status quo in nucleation theory - throughout the book there are a number of new results as well as extensions and generalisations of existing ones.




The Vitreous State


Book Description

This book summarizes the experimental evidence and modern classical and theoretical approaches in understanding the vitreous state, from structural problems, over equilibrium and non-equilibrium thermodynamics, to statistical physics. Glasses, and especially silicate glasses, are only the best known representatives of this particular physical state of matter. Other typical representatives include organic polymer glasses, and many other easily vitrifying organic and inorganic substances, technically important materials, amidst them vitreous water and vitrified aqueous solutions, and also many metallic alloy systems. Some of these systems only form glasses under particular conditions, e.g. through ultra-rapid cooling. This book describes the properties and the formation of both every-day technical glasses and especially of such more exotic forms of vitreous matter. It is a unique source of knowledge and new ideas for materials scientists, engineers and researchers working on condensed matter. The new edition emphasizes latest experimental findings and modern theories, explaining the kinetics of glass formation, the relaxation and stabilization of glasses and their crystallization in terms of new models, derived from the framework of the thermodynamics of irreversible processes. It shows how the properties of common technical glasses, window glass, or the vitreous ice kernel of comets can be used to develop a new understanding of the existence of matter in various, unusual forms. The described theories can even find application for the description of lasers and interesting unusual processes in the universe.




Encyclopedia of Glass Science, Technology, History, and Culture Two Volume Set


Book Description

This Encyclopedia begins with an introduction summarizing itsscope and content. Glassmaking; Structure of Glass, GlassPhysics,Transport Properties, Chemistry of Glass, Glass and Light,Inorganic Glass Families, Organic Glasses, Glass and theEnvironment, Historical and Economical Aspect of Glassmaking,History of Glass, Glass and Art, and outlinepossible newdevelopments and uses as presented by the best known people in thefield (C.A. Angell, for example). Sections and chapters arearranged in a logical order to ensure overall consistency and avoiduseless repetitions. All sections are introduced by a briefintroduction and attractive illustration. Newly investigatedtopics will be addresses, with the goal of ensuring that thisEncyclopedia remains a reference work for years to come.