The Physics of Glassy Polymers


Book Description

This work sets out to provide an up-to-date account of the physical properties and structure of polymers in the glassy state. Properties measured above the glass transition temperature are therefore included only in so far as is necessary for the treatment of the glass transition process. This approach to the subject therefore excludes any detailed account of rubber elasticity or melt rheology or of the structure and conformation of the long chain molecule in solution, although knowledge derived from this field is assumed where required. Major emphasis is placed on structural and mechanical properties, although a number of other physical properties are included. Naturally the different authors contributing to the book write mainly from their own particular points of view and where there are several widely accepted theoretical approaches to a subject, these are sometimes provided in different chapters which will necessarily overlap to a significant extent. For example, the main theoretical presentation on the subject of glass transition is given in Chapter 1. This is supplemented by accounts of the free volume theory in Chapter 3 and in the Introduction, and a short account of the work of Gibbs and DiMarzio, also in Chapter 3. Similarly, there is material on solvent cracking in Chapters 7 and 9, though the two workers approach the subject from opposite directions. Every effort has therefore been made to encourage cross-referencing between different chapters.




Structure and Properties of Glassy Polymers


Book Description

In twenty-nine chapters by leading authorities, Structure and Properties of Glassy Polymers provides readers with comprehensive coverage of basic and applied research on glass polymers as well as a wealth of information on current topics such as molecular modeling, characterization, polymer glasses in confined spaces, and conducting glass polymers. The characterization techniques presented include temperature-modulated differential scanning calorimetry, dielectric loss spectroscopy, photochemical hole burning, positron annihilation lifetime spectroscopy, and transient current generation.




Mechanical Properties and Testing of Polymers


Book Description

This volume represents a continuation of the Polymer Science and Technology series edited by Dr. D. M. Brewis and Professor D. Briggs. The theme of the series is the production of a number of stand alone volumes on various areas of polymer science and technology. Each volume contains short articles by a variety of expert contributors outlining a particular topic and these articles are extensively cross referenced. References to related topics included in the volume are indicated by bold text in the articles, the bold text being the title of the relevant article. At the end of each article there is a list of bibliographic references where interested readers can obtain further detailed information on the subject of the article. This volume was produced at the invitation of Derek Brewis who asked me to edit a text which concentrated on the mechanical properties of polymers. There are already many excellent books on the mechanical properties of polymers, and a somewhat lesser number of volumes dealing with methods of carrying out mechanical tests on polymers. Some of these books are listed in Appendix 1. In this volume I have attempted to cover basic mechanical properties and test methods as well as the theory of polymer mechanical deformation and hope that the reader will find the approach useful.




The Physics of Glassy Polymers


Book Description

This work sets out to provide an up-to-date account of the physical properties and structure of polymers in the glassy state. Properties measured above the glass transition temperature are therefore included only in so far as is necessary for the treatment of the glass transition process. This approach to the subject therefore excludes any detailed account of rubber elasticity or melt rheology or of the structure and conformation of the long chain molecule in solution, although knowledge derived from this field is assumed where required. Major emphasis is placed on structural and mechanical properties, although a number of other physical properties are included. Naturally the different authors contributing to the book write mainly from their own particular points of view and where there are several widely accepted theoretical approaches to a subject, these are sometimes provided in different chapters which will necessarily overlap to a significant extent. For example, the main theoretical presentation on the subject of glass transition is given in Chapter 1. This is supplemented by accounts of the free volume theory in Chapter 3 and in the Introduction, and a short account of the work of Gibbs and DiMarzio, also in Chapter 3. Similarly, there is material on solvent cracking in Chapters 7 and 9, though the two workers approach the subject from opposite directions. Every effort has therefore been made to encourage cross-referencing between different chapters.




Polymers


Book Description

A concise, illustrated presentation of polymer structure and bonding. The well constructed organization and index make the book readily usable as a reference book. Those who read the entire text will be well rewarded with a solid understanding of the fundamentals of polymer properties and possible applications. This book will most certainly remain a valuable reference for years to come.




Encyclopedia of Membranes


Book Description

A landmark work covering the major aspects of the science, technology and application of membrane operations and related fields, from basic phenomena to the most advanced applications and future perspectives. Over 1500 concise entries in an A-Z format cover a vibrant field with a multitude of applications in diverse disciplines such as biotechnology, medicine, agro-food and petrochemical industries, environmental protection, as well as drinking water supply. Coverage includes membrane reactors and catalytic design (catalytic membrane reactors). Practically all unit operations of process engineering can be redesigned as membrane unit operations (e. g. membrane distillation, membrane crystallization, membrane stripping, membrane scrubbing). Entries are provided by an international team of experts from academia, research institutions as well as from industry.




The Physics of Deformation and Fracture of Polymers


Book Description

A physical, mechanism-based presentation of the plasticity and fracture of polymers, covering industrial scale applications through to nanoscale biofluidic devices.




Structure and Properties of Oriented Polymers


Book Description

It has become increasingly evident that there is much to begained from a detailed understanding of the structure and properties of polymers in the oriented state. This book reftects the growth of interest in this area of polymer scienceand attempts to give the reader an up to date viewofthe present position. The individual chapters are for the most part self contained, and cover a very wide range of topics. It is intended that each of them should serve the dual purpose of an expository introduction to the subject and a topical review of recent research. It is inevitable that there will be differences of style and approach in the contributions from the different authors. No atternpt has been made to moderate these differences, as they serve to illustrate the diversity of approaches required to give the reader a balanced view of the subject. I should like to thank the contributors for their endeavours, and especially for their patience in accepting modifications and corrections which make for consistency in the book as a whole. 1 am particularly indebted to Professor Leslie Holliday who originally approached me with the proposition that such a book would be a worthwhile venture and to the publishers who have given me every assistance in making its progress as painless as possible.