Structure of Metals


Book Description




Structure-Property Relations in Nonferrous Metals


Book Description

This junior/senior textbook presents fundamental concepts ofstructure property relations and a description of how theseconcpets apply to every metallic element except iron. Part One of the book describes general concepts of crystalstructure, microstructure and related factors on the mechanical,thermal, magnetic and electronic properties of nonferrous metals,intermetallic compounds and metal matrix composites. Part Two discusses all the nonferrous metallic elements from twoperspectives: First it explains how the concepts presented in PartOne define the properties of a particular metallic element and itsalloys. Second is a description of the major engineering uses ofeach metal. This section features sidebar pieces describingparticular physical property oddities, engineering applications andcase studies. An Instructor's Manual presenting detailed solutionsto all the problems in the book is available from the Wileyeditorial department. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment.







A Handbook of Lattice Spacings and Structures of Metals and Alloys


Book Description

A Handbook of Lattice Spacing and Structures of Metals and Alloys is a 12-chapter handbook that describes the structures and lattice spacings of all binary and ternary alloys. This book starts with an introduction to the accurate determination of structure and lattice spacings. The subsequent chapters deal with the role of structure determination and lattice spacings in alloy formation, as well as the application of this determination to the equilibrium diagram examination. These topics are followed by discussions on the correlation of lattice spacing and magnetic property, including X-ray crystallographic data for those structures allotted a “Strukturbericht type. The remaining chapters contain table lists information about the crystal structures, densities, and expansion coefficients of the elements. These chapters also present further information about lattice spacing and structure determination on metals in alphabetical order. This book is of value to physicists and metallurgists.




Structure and Reactivity of Metals in Zeolite Materials


Book Description

This volume provides the reader with the most up-to-date and relevant knowledge on the reactivity of metals located in zeolite materials, either in framework or extra-framework positions, and the way it is connected with the nature of the chemical environment provided by the host. Since the first report of the isomorphous substitution of titanium in the framework of zeolites giving rise to materials with unusual catalytic properties, the incorporation of many other metals have been investigated with the aim for developing catalysts with improved performance in different reactions. The continuous expansion of the field, both in the variety of metals and zeolite structures, has been accompanied by an increasing focus on the relationship between the reactivity of metal centers and their unique chemical environment. The concepts covered in this volume are of interest to people working in the field of inorganic and physical chemistry, catalysis and chemical engineering, but also for those more interested in theoretical approaches to chemical reactivity. In particular the volume is useful to postgraduate students conducting research in the design, synthesis and catalytic performance of metal-containing zeolites in both academic and application contexts.




Metals and How To Weld Them


Book Description

Metals and How To Weld Them is an indispensable guide for anyone venturing into the world of welding. Whether you’re a novice or an experienced welder, this comprehensive book covers the fundamentals of metallurgy, welding techniques, and safety precautions. From joining metals to understanding their properties, the authors’ expertise shines through, making this a must-read for metalworkers and enthusiasts alike.




Magnesium Alloys Containing Rare Earth Metals


Book Description

Magnesium-based alloys containing rare-earth metals are important structural materials, as they combine low density with high-strength properties. This makes them particularly attractive for industry, especially in cases where the low weight of constructions is critical, as in aircraft and space apparatus construction. One of the remarkable feature




Finite Element Analysis and Design of Metal Structures


Book Description

Traditionally, engineers have used laboratory testing to investigate the behavior of metal structures and systems. These numerical models must be carefully developed, calibrated and validated against the available physical test results. They are commonly complex and very expensive. From concept to assembly, Finite Element Analysis and Design of Metal Structures provides civil and structural engineers with the concepts and procedures needed to build accurate numerical models without using expensive laboratory testing methods. Professionals and researchers will find Finite Element Analysis and Design of Metal Structures a valuable guide to finite elements in terms of its applications. - Presents design examples for metal tubular connections - Simplified review for general steps of finite element analysis - Commonly used linear and nonlinear analyses in finite element modeling - Realistic examples of concepts and procedures for Finite Element Analysis and Design







Electronic Structure and Properties of Transition Metal Compounds


Book Description

With more than 40% new and revised materials, this second edition offers researchers and students in the field a comprehensive understanding of fundamental molecular properties amidst cutting-edge applications. Including ~70 Example-Boxes and summary notes, questions, exercises, problem sets, and illustrations in each chapter, this publication is also suitable for use as a textbook for advanced undergraduate and graduate students. Novel material is introduced in description of multi-orbital chemical bonding, spectroscopic and magnetic properties, methods of electronic structure calculation, and quantum-classical modeling for organometallic and metallobiochemical systems. This is an excellent reference for chemists, researchers and teachers, and advanced undergraduate and graduate students in inorganic, coordination, and organometallic chemistry.