Atmospheric Circulation Dynamics and General Circulation Models


Book Description

General circulation models (GCMs), which define the fundamental dynamics of atmospheric circulation, are nowadays used in various fields of atmospheric science such as weather forecasting, climate predictions and environmental estimations. The Second Edition of this renowned work has been updated to include recent progress of high resolution global modeling. It also contains for the first time aspects of high-resolution global non-hydrostatic models that the author has been studying since the publication of the first edition. Some highlighted results from the Non-hydrostatic ICosahedral Atmospheric Model (NICAM) are also included. The author outlines the theoretical concepts, simple models and numerical methods for modeling the general circulation of the atmosphere. Concentrating on the physical mechanisms responsible for the development of large-scale circulation of the atmosphere, the book offers comprehensive coverage of an important and rapidly developing technique used in the atmospheric science. Dynamic interpretations of the atmospheric structure and their aspects in the general circulation model are described step by step.




Studies of the Atmospheric General Circulation, III.


Book Description

This Final Report describes the work of the M.I.T. General Circulation Project performed during the period, 1 January 1958 to 31 December 1959, under contract number AF 19(604)-2242. In general terms, the primary concerns of the project were (1) to measure, as far as the existing data permit, the distribution, transfer and conversion of atmospheric energy as a function of wave number, and the hemispheric distribution and transfer of water vapor, and (2) to pursue theoretical studies of the dynamics of the general circulation. The body of this report contains unpublished articles and reprints of published articles written by project members. We let the contents of these articles serve as the summary of accomplishments. In addition to this material, two volumes, too large to be included here, were compiled: a collection of classical papers on thermal convection, edited by B. Saltzman (Scientific Report Number 1); and an atlas of hemispheric water vapor statistics for the year 1950, compiled by J.P. Peixoto (Scientific Report Number 3).




The Development of Atmospheric General Circulation Models


Book Description

Presenting a comprehensive discussion of general circulation models of the atmosphere, this book covers their historical and contemporary development, their societal context, and current efforts to integrate these models into wider earth-system models. Leading researchers provide unique perspectives on the scientific breakthroughs, overarching themes, critical applications, and future prospects for atmospheric general circulation models. Key interdisciplinary links to other subject areas such as chemistry, oceanography and ecology are also highlighted. This book is a core reference for academic researchers and professionals involved in atmospheric physics, meteorology and climate science, and can be used as a resource for graduate-level courses in climate modeling and numerical weather prediction. Given the critical role that atmospheric general circulation models are playing in the intense public discourse on climate change, it is also a valuable resource for policy makers and all those concerned with the scientific basis for the ongoing public-policy debate.







The Development of Atmospheric General Circulation Models


Book Description

Presents unique perspectives from leading researchers on the development and application of atmospheric general circulation models. It is a core reference for academic researchers and professionals involved in atmospheric physics, meteorology and climate science, and a resource for graduate-level courses in climate modeling and numerical weather prediction.




The Atmospheric General Circulation


Book Description

An engaging, comprehensive, richly illustrated textbook about the atmospheric general circulation, written by leading researchers in the field. The book elucidates the pervasive role of atmospheric dynamics in the Earth System, interprets the structure and evolution of atmospheric motions across a range of space and time scales in terms of fundamental theoretical principles, and includes relevant historical background and tutorials on research methodology. The book includes over 300 exercises and is accompanied by extensive online resources, including solutions manuals, an animations library, and an introduction to online visualization and analysis tools. This textbook is suitable as a textbook for advanced undergraduate and graduate level courses in atmospheric sciences and geosciences curricula and as a reference textbook for researchers.







The Global Circulation of the Atmosphere


Book Description

Despite major advances in the observation and numerical simulation of the atmosphere, basic features of the Earth's climate remain poorly understood. Integrating the available data and computational resources to improve our understanding of the global circulation of the atmosphere remains a challenge. Theory must play a critical role in meeting this challenge. This book provides an authoritative summary of the state of the art on this front. Bringing together sixteen of the field's leading experts to address those aspects of the global circulation of the atmosphere most relevant to climate, the book brings the reader up to date on the key frontiers in general circulation theory-including the nonlinear and turbulent global-scale dynamics that determine fundamental aspects of the Earth's climate. While emphasizing theory, as expressed through relatively simple mathematical models, it also draws connections to simulations with comprehensive general circulation models. Topics include the dynamics of storm tracks, interactions between wave dynamics and the hydrological cycle, monsoons, tropical and extratropical dynamics and interactions, and the processes controlling atmospheric humidity. An essential resource for graduate students in atmospheric, ocean, and climate sciences and for researchers seeking an overview of the field, The Global Circulation of the Atmosphere sets the standard for future research in a science that stands at a critical juncture. With a foreword by Edward Lorenz, the book includes chapters by Christopher Bretherton; Kerry Emanuel; Isaac Held; David Neelin; Raymond Pierrehumbert, Hélène Brogniez, and Rémy Roca; Alan Plumb; Walter Robinson; Tapio Schneider; Richard Seager and David Battisti; Adam Sobel; Kyle Swanson; and Pablo Zurita-Gotor and Richard Lindzen.