Hyaluronan in Cancer Biology


Book Description

Hyaluronan biology is being recognized as an important regulator of cancer progression. Paradoxically, both hyaluronan (HA) and hyaluronidases, the enzymes that eliminate HA, have also been correlated with cancer progression. Hyaluronan, a long-chain polymer of the extracellular matrix, opens up tissue spaces through which cancer cells move and metastasize. It also confers motility upon cells through interactions of cell-surface HA with the cytoskeleton. Embryonic cells in the process of movement and proliferation use the same strategy. It is an example of how cancer cells have commandeered normal cellular processes for their own survival and spread. There are also parallels between cancer and wound healing, cancer occasionally being defined as a wound that does not heal. The growing body of literature regarding this topic has recently progressed from describing the association of hyaluronan and hyaluronidase expression associated with different cancers, to understanding the mechanisms that drive tumor cell activation, proliferation, drug resistance, etc. No one source, however, discusses hyaluronan synthesis and catabolism, as well as the factors that regulate the balance. This book will offer a comprehensive summary and cutting-edge insight into Hyaluronan biology, the role of the HA receptors, the hyaluronidase enzymes that degrade HA, as well as HA synthesis enzymes and their relationship to cancer. Offers a comprehensive summary and cutting-edge insight into Hyaluronan biology, the role of the HA receptors, the hyaluronidase enzymes that degrade HA, as well as HA synthesis enzymes and their relationship to cancer Chapters are written by the leading international authorities on this subject, from laboratories that focus on the investigation of hyaluronan in cancer initiation, progression, and dissemination Focuses on understanding the mechanisms that drive tumor cell activation, proliferation, and drug resistance







Therapeutic Enzymes: Function and Clinical Implications


Book Description

Therapeutic enzymes exhibit fascinating features and opportunities, and represent a significant and promising subcategory of modern biopharmaceuticals for the treatment of several severe diseases. Research and drug developments efforts and the advancements in biotechnology over the past twenty years have greatly assisted the introduction of efficient and safe enzyme-based therapies for a range of both rare and common disorders. The introduction and regulatory approval of twenty different recombinant enzymes has enabled effective enzyme-replacement therapy. This volume aims to overview these therapeutic enzymes, focusing in particular on more recently approved enzymes produced by recombinant DNA technology. This volume is composed of four sections. Section 1 provides an overview of the production process and biochemical characterization of therapeutic enzymes, while Section 2 focuses upon the engineering strategies and delivery methods of therapeutic enzymes. Section 3 highlights the clinical applications of approved therapeutic enzymes, including aspects on their structure, indications and mechanisms of action. Together with information on these mechanisms, safety and immunogenicity issues and various adverse events of the recombinant enzymes used for therapy are discussed. Section 4, provides discussion on the prospective and future developments of new therapeutic enzymes. This book is aimed at academics, researchers and students undertaking advanced undergraduate/postgraduate programs in the biopharmaceutical/biotechnology area who wish to gain a comprehensive understanding of enzyme-based therapeutic molecules.




Dukes' Physiology of Domestic Animals


Book Description

Blopd circulation and the cardiovascular system. Respiration. Digestion, absorption, and metabolism. Minerals, bones, and joints. Water balance and excretion. Skeletal muscle, the nervous system, temperature regulation, and special senses. Endocrinology, reproduction, and lactation.