Transport Phenomena in Heat and Mass Transfer


Book Description

Theoretical, numerical and experimental studies of transport phenomena in heat and mass transfer are reported in depth in this volume. Papers are presented which review and discuss the most recent developments in areas such as: Mass transfer; Cooling of electronic components; Phase change processes; Instrumentation techniques; Numerical methods; Heat transfer in rotating machinery; Hypersonic flows; and Industrial applications. Bringing together the experience of specialists in these fields, the volume will be of interest to researchers and practising engineers who wish to enhance their knowledge in these rapidly developing areas.







Rheology of Fluid and Semisolid Foods: Principles and Applications


Book Description

The second edition of this fascinating work examines the concepts needed to characterize rheological behavior of fluid and semisolid foods. It also looks at how to use various ingredients to develop desirable flow properties in fluid foods as well as structure in gelled systems. It covers the crucially important application of rheology to sensory assessment and swallowing, as well as the way it can be applied to handling and processing foods. All the chapters have been updated to help readers better understand the importance rheological properties play in food science and utilize these properties to characterize food.










Geophysical Abstracts


Book Description







Magnetoconvection


Book Description

Leading experts present the current state of knowledge of the subject of magnetoconvection from the viewpoint of applied mathematics.




Rotating Relativistic Stars


Book Description

The masses of neutron stars are limited by an instability to gravitational collapse and an instability driven by gravitational waves limits their spin. Their oscillations are relevant to x-ray observations of accreting binaries and to gravitational wave observations of neutron stars formed during the coalescence of double neutron-star systems. This volume includes more than forty years of research to provide graduate students and researchers in astrophysics, gravitational physics and astronomy with the first self-contained treatment of the structure, stability and oscillations of rotating neutron stars. This monograph treats the equations of stellar equilibrium; key approximations, including slow rotation and perturbations of spherical and rotating stars; stability theory and its applications, from convective stability to the r-mode instability; and numerical methods for computing equilibrium configurations and the nonlinear evolution of their oscillations. The presentation of fundamental equations, results and applications is accessible to readers who do not need the detailed derivations.