Photoelectrochemical Water Splitting


Book Description

This book outlines many of the techniques involved in materials development and characterization for photoelectrochemical (PEC) – for example, proper metrics for describing material performance, how to assemble testing cells and prepare materials for assessment of their properties, and how to perform the experimental measurements needed to achieve reliable results towards better scientific understanding. For each technique, proper procedure, benefits, limitations, and data interpretation are discussed. Consolidating this information in a short, accessible, and easy to read reference guide will allow researchers to more rapidly immerse themselves into PEC research and also better compare their results against those of other researchers to better advance materials development. This book serves as a “how-to” guide for researchers engaged in or interested in engaging in the field of photoelectrochemical (PEC) water splitting. PEC water splitting is a rapidly growing field of research in which the goal is to develop materials which can absorb the energy from sunlight to drive electrochemical hydrogen production from the splitting of water. The substantial complexity in the scientific understanding and experimental protocols needed to sufficiently pursue accurate and reliable materials development means that a large need exists to consolidate and standardize the most common methods utilized by researchers in this field.




Design of Advanced Photocatalytic Materials for Energy and Environmental Applications


Book Description

Research for the development of more efficient photocatalysts has experienced an almost exponential growth since its popularization in early 1970’s. Despite the advantages of the widely used TiO2, the yield of the conversion of sun power into chemical energy that can be achieved with this material is limited prompting the research and development of a number of structural, morphological and chemical modifications of TiO2 , as well as a number of novel photocatalysts with very different composition. Design of Advanced Photocatalytic Materials for Energy and Environmental Applications provides a systematic account of the current understanding of the relationships between the physicochemical properties of the catalysts and photoactivity. The already long list of photocatalysts phases and their modifications is increasing day by day. By approaching this field from a material sciences angle, an integrated view allows readers to consider the diversity of photocatalysts globally and in connection with other technologies. Design of Advanced Photocatalytic Materials for Energy and Environmental Applications provides a valuable road-map, outlining the common principles lying behind the diversity of materials, but also delimiting the imprecise border between the contrasted results and the most speculative studies. This broad approach makes it ideal for specialist but also for engineers, researchers and students in related fields.




Photoelectrochemical Water Splitting


Book Description

Photoelectrochemical (PEC) water splitting is a highly promising process for converting solar energy into hydrogen energy. The book presents new cutting-edge research findings in this field. Subjects covered include fabrication and characteristics of various electrode materials, cell design and strategies for enhancing the properties of PEC electrode materials. Keywords: Renewable Energy Sources, Solar Energy Conversion, Hydrogen Production, Photoelectrochemical Water Splitting, Electrode Materials for Water Splitting, Transition Metal Chalcogenide Electrodes, Narrow Bandgap Semiconductor Electrodes, Ti-based Electrode Materials, BiVO4 Photoanodes, Noble Electrode Materials, Cell Design for Water Splitting.




Hierarchical Nanostructures for Energy Devices


Book Description

Surface area has a directly relationship with the efficiency of energy devices. Hierarchical nanostructuring has the potential to greatly increase surface area, and their electrical properties are favourable, not only to energy generation and storage, but also energy-consuming electronic circuits. This book provides systematic coverage of how nanostructured materials can be applied to energy devices, with an emphasis on the process of generation to storage and consumption. The fundamentals (including properties, characterisation and synthesis) are clearly presented across the first chapters of the book, providing readers new to the field with a clear overview of this expanding topic. The detailed discussion of applications will be an inspiration to those already well-versed in the field. The editors have more than a decade of experience in working on all aspects of energy generation and storage - in academia, national laboratories and industry. The book presents a balanced view from all sectors and is presented in a format accessible by postgraduate students and professional researchers alike.




Functional Nanomaterials and their Applications


Book Description

Special topic volume with invited peer reviewed papers only.




Photo- and Electro-Catalytic Processes


Book Description

Explore green catalytic reactions with this reference from a renowned leader in the field Green reactions—like photo-, photoelectro-, and electro-catalytic reactions—offer viable technologies to solve difficult problems without significant damage to the environment. In particular, some gas-involved reactions are especially useful in the creation of liquid fuels and cost-effective products. In Photo- and Electro-Catalytic Processes: Water Splitting, N2 Fixing, CO2 Reduction, award-winning researcher Jianmin Ma delivers a comprehensive overview of photo-, electro-, and photoelectron-catalysts in a variety of processes, including O2 reduction, CO2 reduction, N2 reduction, H2 production, water oxidation, oxygen evolution, and hydrogen evolution. The book offers detailed information on the underlying mechanisms, costs, and synthetic methods of catalysts. Filled with authoritative and critical information on green catalytic processes that promise to answer many of our most pressing energy and environmental questions, this book also includes: Thorough introductions to electrocatalytic oxygen reduction and evolution reactions, as well as electrocatalytic hydrogen evolution reactions Comprehensive explorations of electrocatalytic water splitting, CO2 reduction, and N2 reduction Practical discussions of photoelectrocatalytic H2 production, water splitting, and CO2 reduction In-depth examinations of photoelectrochemical oxygen evolution and nitrogen reduction Perfect for catalytic chemists and photochemists, Photo- and Electro-Catalytic Processes: Water Splitting, N2 Fixing, CO2 Reduction also belongs in the libraries of materials scientists and inorganic chemists seeking a one-stop resource on the novel aspects of photo-, electro-, and photoelectro-catalytic reactions.




Metal Chalcogenide Nanostructures for Renewable Energy Applications


Book Description

This first ever reference book that focuses on metal chalcogenide semiconductor nanostructures for renewable energy applications encapsulates the state-of-the-art in multidisciplinary research on the metal chalcogenide semiconductor nanostructures (nanocrystals, nanoparticles, nanorods, nanowires, nanobelts, nanoflowers, nanoribbons and more). The properties and synthesis of a class of nanomaterials is essential to renewable energy manufacturing and this book focuses on the synthesis of metal chalcogendie nanostructures, their growth mechanism, optical, electrical, and other important properties and their applications in different diverging fields like photovoltaics, hydrogen production, theromelectrics, lithium battery, energy storage, photocatalysis, sensors. An important reference source for students, scientists, engineers, researchers and industrialists working on nanomaterials-based energy aspects associated with chemistry, physics, materials science, electrical engineering, energy science and technology, and environmental science.




Heterogeneous Photocatalysis


Book Description

Discover the latest research in photocatalysis combined with foundational topics in basic physical and chemical photocatalytic processes In Heterogeneous Photocatalysis: From Fundamentals to Applications in Energy Conversion and Depollution, distinguished researcher and editor Jennifer Strunk delivers a rigorous discussion of the two main topics in her field—energy conversion and depollution reactions. The book covers topics like water splitting, CO2 reduction, NOx abatement and harmful organics degradation. In addition to the latest research on these topics, the reference provides readers with fundamental information about elementary physical and chemical processes in photocatalysis that are extremely practical in this interdisciplinary field. It offers an excellent overview of modern heterogeneous photocatalysis and combines concepts from different viewpoints to allow researchers with backgrounds as varied as electrochemistry, material science, and semiconductor physics to begin developing solutions with photocatalysis. In addition to subjects like metal-free photocatalysts and photocarrier loss pathways in metal oxide absorber materials for photocatalysis explored with time-resolved spectroscopy, readers will also benefit from the inclusion of: Thorough introductions to kinetic and thermodynamic considerations for photocatalyst design and the logic, concepts, and methods of the design of reliable studies on photocatalysis Detailed explorations of in-situ spectroscopy for mechanistic studies in semiconductor photocatalysis and the principles and limitations of photoelectrochemical fuel generation Discussions of photocatalysis, including the heterogeneous catalysis perspective and insights into photocatalysis from computational chemistry Treatments of selected aspects of photoreactor engineering and defects in photocatalysis Perfect for photochemists, physical and catalytic chemists, electrochemists, and materials scientists, Heterogeneous Photocatalysis will also earn a place in the libraries of surface physicists and environmental chemists seeking up-to-date information about energy conversion and depollution reactions.




Polymers in Energy Conversion and Storage


Book Description

The research and development activities in energy conversion and storage are playing a significant role in our daily lives owing to the rising interest in clean energy technologies to alleviate the fossil-fuel crisis. Polymers are used in energy conversion and storage technology due to their low-cost, softness, ductility and flexibility compared to carbon and inorganic materials. Polymers in Energy Conversion and Storage provides in-depth literature on the applicability of polymers in energy conversion and storage, history and progress, fabrication techniques, and potential applications. Highly accomplished experts review current and potential applications including hydrogen production, solar cells, photovoltaics, water splitting, fuel cells, supercapacitors and batteries. Chapters address the history and progress, fabrication techniques, and many applications within a framework of basic studies, novel research, and energy applications. Additional Features Include: Explores all types of energy applications based on polymers and its composites Provides an introduction and essential concepts tailored for the industrial and research community Details historical developments in the use of polymers in energy applications Discusses the advantages of polymers as electrolytes in batteries and fuel cells This book is an invaluable guide for students, professors, scientists and R&D industrial experts working in the field.




Metal Oxide-Based Photocatalysis


Book Description

Metal Oxide-Based Photocatalysis: Fundamentals and Prospects for Application explains the principles and fundamentals of metal oxide-based photocatalysis and the requirements necessary for their use in photocatalysis. It also discusses preparation methods for photocatalysis, and the advantages, disadvantages and achievements of the most important metal oxides (TiO2, ZnO, Fe2O3, Ta2O3, CuO, NiO, Cr2O3, RuO2, etc.). The book concludes with the most important photocatalytic applications and an overview of the future. Applications are organized by potential needs and solutions, addressing such areas as water treatment, hydrogen production, air treatment, chemical synthesis, and applications in medicine and construction. - Provides coverage of applications, presenting needs and solutions - Covers essential applications, such as water treatment, hydrogen production, air depollution, medical applications, and much more - Includes the characterization of the most important metal oxides used in heterogeneous photocatalysis