STUDY OF THE CYGNUS REGION WITH FERMI AND HAWC


Book Description

Abstract : The Cygnus Cocoon is an extended source of high-energy gamma-ray emission in the Cygnus region. The gamma-ray emission has been attributed to a volume 50pc in diameter of freshly-accelerated particles near the Supernova Remnant ɣ Cygni which is located 1.4kpc from the solar system [Ackermann et al., 2011], [Tibaldo et al., 2013]. Since its discovery in 2011, Fermi LAT has improved their event reconstruction to allow analysis at higher energies, and recorded six additional years of data. An analysis was performed on the entire dataset to reproduce the previous results, then expand on them with higher energies and larger time spans of data. No evidence of temporal variability was found for the Cocoon. It was found that for the energy range of 1-870 GeV a logparabola spectrum is preferred over a powerlaw spectrum. Analysis is then done comparing the Cocoon spectrum measured using LAT data with a HAWC source [Hona et al., 2017] that is thought to be the Cocoon. It was found that the LAT powerlaw spectrum connects with the HAWC spectrum at 1 TeV, while the LAT powerlaw spectrum is an order of magnitude lower then the HAWC source. This means that for the combined analysis the powerlaw spectrum is prefered over the logparabola, if the HAWC source is the Cocoon.




Very-High-Energy Astrophysical Processes in the Cygnus Region of the Milky Way


Book Description

Very-high-energy (VHE) gamma-ray astronomy can provide insight in to the origin of cosmic rays. The Cygnus arm of the Galaxy is a well studied region and has been shown to have active sources of particle acceleration. VERITAS (Very Energetic Radiation Imaging Telescope Array System) is an array of four 12 meter diameter imaging atmospheric Cherenkov telescopes located at the Fred Lawrence Whipple Observatory in southern Arizona. From 2007 through 2012 VERITAS observed the Cygnus region for nearly 300 hours from 67i to 82i in Galactic longitude and from -1i to 4i in Galactic latitude. The survey and followup observations detected four sources: VER J2031+415, VER J2019+407, VER J2016+317, and VER J2019+368. The Fermi Large Area Telescope (Fermi-LAT) is a satellite gamma-ray telescope operating in the high-energy gamma-ray regime. The emission detected by the Fermi-LAT can provide insight into the nature of these sources and guide targeted followup observations in the region. We have reanalyzed the VERITAS data with updated VERITAS analysis and completed an analysis of over seven years of Fermi-LAT data in the region. We have discovered Fermi-LAT emission associated with VER J2031+415 strengthening its interpretation as a pulsar wind nebula, the SNR nature of VER J2019+407 has been confirmed by this study, and VER J2016+317 has been confirmed to be associated with the pulsar wind nebula CTB 87 rather than with a blazar source located at the same position. The Cygnus region is observed to be a particularly bright region of the Galaxy with both very-high-energy and high-energy gamma-ray experiments. These results motivate continued study of the region with VERITAS, as well as with current and future experiments such as HAWC and CTA.







Extreme Particle Acceleration in Microquasar Jets and Pulsar Wind Nebulae with the MAGIC Telescopes


Book Description

This exhaustive work sheds new light on unsolved questions in gamma-ray astrophysics. It presents not only a complete introduction to the non-thermal Universe, but also a description of the Imaging Atmospheric Cherenkov technique and the MAGIC telescopes. The Fermi-LAT satellite and the HAWC Observatory are also described, as results from both are included. The physics section of the book is divided into microquasars and pulsar wind nebulae (PWNe), and includes extended overviews of both. In turn, the book discusses constraints on particle acceleration and gamma-ray production in microquasar jets, based on the analyses of MAGIC data on Cygnus X-1, Cygnus X-3 and V404 Cygni. Moreover, it presents the discovery of high-energy gamma-ray emissions from Cygnus X-1, using Fermi-LAT data. The book includes the first joint work between MAGIC, Fermi-LAT and HAWC, and discusses the hypothetical PWN nature of the targets in depth. It reports on a PWN population study that discusses, for the first time, the importance of the surrounding medium for gamma-ray production, and in closing presents technical work on the first Large-Size-Telescope (LST; CTA Collaboration), along with a complete description of the camera.




Fermi Large Area Telescope Observations of the Cygnus Loop Supernova Remnant


Book Description

We present an analysis of the gamma-ray measurements by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) Cygnus Loop (G74.0-8.5). We detect significant gamma-ray emission associated with the SNR in the energy band 0.2-100 GeV. The gamma-ray spectrum shows a break in the range 2-3 GeV. The gamma-ray luminosity is ≈ 1 x 1033 erg s−1 between 1-100 GeV, much lower than those of other GeV-emitting SNRs. The morphology is best represented by a ring shape, with inner/outer radii 0{sup o}.7 ± 0{sup o}.1 and 1{sup o}.6 ± 0{sup o}.1. Given the association among X-ray rims, H[alpha] filaments and gamma-ray emission, we argue that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields adjacent to the shock regions. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray spectrum.




Encyclopedia Of Cosmology, The - Set 2: Frontiers In Cosmology (In 3 Volumes)


Book Description

The second set of The Encyclopedia of Cosmology, in three volumes, continues this major, long-lasting, seminal reference at the graduate student level laid out by the most prominent researchers in the general field of cosmology. Together, these volumes will be a comprehensive review of the most important current topics in cosmology, discussing the important concepts and current status in each field, covering both theory and observation.These three volumes are edited by Dr Giovanni Fazio from the Center for Astrophysics | Harvard & Smithsonian, with each volume authored or edited by specialists in the area: Modified Gravity by Claudia de Rham and Andrew Tolley (Imperial College), Neutrino Physics and Astrophysics edited by Floyd Stecker (NASA/Goddard Space Flight Center), Black Holes edited by Zoltan Haiman (Columbia University). These volumes follow the earlier publication in 2020 of The Encyclopedia of Cosmology, which comprises the following four volumes: Galaxy Formation and Evolution by Rennan Barkana (Tel Aviv University), Numerical Simulations in Cosmology edited by Kentaro Nagamine (Osaka University / University of Nevada), Dark Energy by Shinji Tsujikawa (Tokyo University of Science), and Dark Matter by Jihn E Kim (Seoul National University). The Encyclopedia aims to provide an overview of the most important topics in cosmology and serve as an up-to-date reference in astrophysics.




Science With The Cherenkov Telescope Array


Book Description

This book summarizes the science to be carried out by the upcoming Cherenkov Telescope Array, a major ground-based gamma-ray observatory that will be constructed over the next six to eight years. The major scientific themes, as well as core program of key science projects, have been developed by the CTA Consortium, a collaboration of scientists from many institutions worldwide.CTA will be the major facility in high-energy and very high-energy photon astronomy over the next decade and beyond. CTA will have capabilities well beyond past and present observatories. Thus, CTA's science program is expected to be rich and broad and will complement other major multiwavelength and multimessenger facilities. This book is intended to be the primary resource for the science case for CTA and it thus will be of great interest to the broader physics and astronomy communities. The electronic version (e-book) is available in open access.




Advances In Very High Energy Astrophysics: The Science Program Of The Third Generation Iacts For Exploring Cosmic Gamma Rays


Book Description

Very-high-energy astrophysics studies the most energetic photons in the sky, allowing the exploration of violent and extreme non-thermal phenomena in the Universe. Significant advances in knowledge have been made in this field using ground-based imaging atmospheric Cherenkov telescopes (IACTs) as detectors, to study these physical processes in the Universe. This book reviews the progress in the field since the advent of the second generation IACTs around 2004. Going through the scientific highlights obtained by the three current instruments of this kind, H.E.S.S., MAGIC and VERITAS, operating now for more than 15 years, this book presents a state-of-the-art knowledge in four areas of modern astrophysics and cosmology, namely the origin of the cosmic rays, the physics of compact objects and their resulting relativistic outflows, gamma-ray cosmology, and the search for dark matter. Along with a detailed review of the outstanding scientific outcomes, a summary of the key technological developments that yielded the recognized success of the technique is also provided.This book is written for early-career academics in the fields of astrophysics, high energy physics and cosmology. At the same time, it can serve as a source of reference for the expert in the field.




Interstellar Turbulence


Book Description

This timely volume presents a series of review articles covering every aspect of interstellar turbulence--from accretion disks, molecular clouds, atomic and ionized media, through to spiral galaxies - based on a major international conference held in Mexico City.With advances in observational techniques and the development of more efficient computer codes and faster computers, research in this area has made spectacular progress in recent years. This book provides a comprehensive overview of the most important developments in observing and modelling turbulent flows in the cosmos. It provides graduate student and researchers with a state-of-the-art summary of observational, theoretical and computational research in interstellar turbulence.




Compact Stellar X-ray Sources


Book Description

X-ray astronomy is the prime available window on astrophysical compact objects: black holes, neutron stars and white dwarfs. In this book, prominent experts provide a comprehensive overview of the observations and astrophysics of these objects. This is a valuable reference for graduate students and active researchers.