Revealing the Most Energetic Light from Pulsars and Their Nebulae


Book Description

This book reports on the extraordinary observation of TeV gamma rays from the Crab Pulsar, the most energetic light ever detected from this type of object. It presents detailed information on the painstaking analysis of the unprecedentedly large dataset from the MAGIC telescopes, and comprehensively discusses the implications of pulsed TeV gamma rays for state-of-the-art pulsar emission models. Using these results, the book subsequently explores new testing methodologies for Lorentz Invariance Violation, in terms of a wavelength-dependent speed of light. The book also covers an updated search for Very-High-Energy (VHE), >100 GeV, emissions from millisecond pulsars using the Large Area Telescope on board the Fermi satellite, as well as a study on the promising Pulsar Wind Nebula candidate PSR J0631. The observation of VHE gamma rays is essential to studying the non-thermal sources of radiation in our Universe. Rotating neutron stars, also known as pulsars, are an extreme source class known to emit VHE gamma rays. However, to date only two pulsars have been detected with emissions above 100 GeV, and our understanding of their emission mechanism is still lacking.




Pulsar Wind Nebulae at High Energies


Book Description

Pulsar wind nebulae (PWNe) are the most abundant TeV gamma-ray emitters in the Milky Way. The radiative emission of these objects is powered by fast-rotating pulsars, which donate parts of their rotational energy into winds of relativistic particles. This thesis presents an in-depth study of the detected population of PWNe at high energies. To outline general trends regarding their evolutionary behaviour, a time-dependent model is introduced and compared to the available data. In particular, this work presents two exceptional PWNe which protrude from the rest of the population, namely the Crab Nebula and N 157B. Both objects are driven by pulsars with extremely high rotational energy loss rates. Accordingly, they are often referred to as energetic twins. Modelling the non-thermal multi-wavelength emission of N157B gives access to specific properties of this object, like the magnetic field inside the nebula. Comparing the derived parameters to those of the Crab Nebula reveals large intrinsic differences between the two PWNe. Possible origins of these differences are discussed in context of the resembling pulsars. Compared to the TeV gamma-ray regime, the number of detected PWNe is much smaller in the MeV-GeV gamma-ray range. In the latter range, the Crab Nebula stands out by the recent detection of gamma-ray flares. In general, the measured flux enhancements on short time scales of days to weeks were not expected in the theoretical understanding of PWNe. In this thesis, the variability of the Crab Nebula is analysed using data from the Fermi Large Area Telescope (Fermi-LAT). For the presented analysis, a new gamma-ray reconstruction method is used, providing a higher sensitivity and a lower energy threshold compared to previous analyses. The derived gamma-ray light curve of the Crab Nebula is investigated for flares and periodicity. The detected flares are analysed regarding their energy spectra, and their variety and commonalities are discussed. In addition, a dedicated analysis of the flare which occurred in March 2013 is performed. The derived short-term variability time scale is roughly 6h, implying a small region inside the Crab Nebula to be responsible for the enigmatic flares. The most promising theories explaining the origins of the flux eruptions and gamma-ray variability are discussed in detail. In the technical part of this work, a new analysis framework is presented. The introduced software, called gammalib/ctools, is currently being developed for the future CTA observa- tory. The analysis framework is extensively tested using data from the H. E. S. S. experiment. To conduct proper data analysis in the likelihood framework of gammalib/ctools, a model describing the distribution of background events in H.E.S.S. data is presented. The software provides the infrastructure to combine data from several instruments in one analysis. To study the gamma-ray emitting PWN population, data from Fermi-LAT and H. E. S. S. are combined in the likelihood framework of gammalib/ctools. In particular, the spectral peak, which usually lies in the overlap energy regime between these two instruments, is determined with the presented analysis framework. The derived measurements are compared to the predictions from the time-dependent model. The combined analysis supports the conclusion of a diverse population of gamma-ray emitting PWNe.




X-ray Observations of Pulsar Wind Nebulae


Book Description

Pulsar wind nebulae (PWNe) are non-thermal bubbles blown by the relativistic winds of rapidly rotating neutron stars. They are formed in the cavity evacuated by the explosion of a core collapse supernova, and depending on their evolutionary stage may appear as a region of hard X-ray emission within a shell of million degree gas, or be the only visible remains of the cataclysmic event. With deep observations and spatially resolved X-ray spectroscopy, we probe the environment surrounding PWNe of different ages to search for the missing emission predicted from shock heated gas. We examine the properties of the relativistic winds and compare our results with diffusion models and hydrodynamic simulations. In the process of creating consistent spectral maps of PWNe we discover variability in archival Chandra data, opening a new window for observations and theory to explore. We present the deepest Chandra study of G21.5-0.9, finding faint thermal emission embedded in the primarily non-thermal limb-brightened shell. In analysing the synchrotron emission from the PWN, we find an adequate fit with a spatially averaged diffusion model to describe the transport of the wind through the nebula. Unlike the limb-brightened shell previously revealed in G21.5-0.9 with sufficient observation time, the missing shell in CTB 87 remains hidden despite a deep XMM-Newton observation. We constrain the ambient density and favour expansion into a low density bubble. We attribute the morphology to an interaction of the wind with a reverse shock due to the motion of the pulsar within a ~20 kyr old remnant. We present the first X-ray spectral map of this remnant, and find a good agreement with a simulated map. While merging or simultaneously fitting observations separated by extended periods of time will improve statistics, it may also hide unknown variability. We discover significant spectral variability in G21.5-0.9, 3C58, and Kes 75, and marginal evidence of variability in G11.2-0.3 and G54.1+0.3 to be confirmed with future observations.




Non-Thermal X-Ray and Soft Gamma-Ray Radiation from the Young Pulsars


Book Description

This dissertation, "Non-thermal X-ray and Soft Gamma-ray Radiation From the Young Pulsars" by Yu, Wang, 王禹, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: This thesis focuses on the radiation mechanisms of non-thermal X-rays and soft gamma-rays of two types of thousands year old spin-down powered pulsars. The thousands year old pulsars have distinct radiation behaviors from the middle-aged gamma-ray pulsars. In the magnetosphere of the pulsar, the particles are accelerated by the electric field resulting from the rotation of the neutron star. These accelerated particles move along the magnetic field lines and emit GeV gamma-ray curvature photons. For the middle-aged pulsars, most of the curvature photons, whose observed spectra are described well by power law with exponential cut-off, can escape out of the light cylinder. In X-ray band, the middle-aged pulsars usually have black body radiation with a weak non-thermal component described by power law. On the other hand, for the thousands-year-old pulsars, the curvature spectra in GeV band, which obey power law with exponential cut-off, are smeared out by the pair creation or missed by the line of sight. The secondary pairs generated by pair creation processes spiral around the magnetic field lines and emit synchrotron photons, and the young pulsars have stronger non-thermal X-ray and soft gamma-ray radiation than the middle-aged ones. Seven young pulsars have been studied here, they are the Crab pulsar, PSRs B0540-69, B1509-58, J1846-0258, J1811-1925, J1617-5055 and J1930+1852. These seven fall into two categories: the Crab-like pulsars and soft gamma-ray pulsars. The Crab-like pulsars include the Crab pulsar and the Giant Crab PSR B0540-69, and the soft gamma-ray pulsars include the other five. The main difference between the two types of young pulsars is that the Crab-like pulsars' spectra peak at E DOI: 10.5353/th_b5177322 Subjects: Gamma ray astronomy X-ray astronomy Pulsars







Millisecond Pulsars and Pulsar Wind Nebulae as Sources of Gamma Rays and Cosmic Rays


Book Description

General ralativistic (GR) frame dragging -- GR electrodynamics -- Millesecond pulsar visibility -- Non-thermal radiation processes -- Pair productin -- Pulsar wind nebulae -- Gamma rays -- Cosmic rays -- H.E.S.S. -- GLAST -- Individual pulsars: PSR J0437-4715, PSR B1821-24 -- Algemeen-relativistiese (AR) raamsleuring -- AR-elektrodinamika -- Millisekonde-pulsarsigbaarheid -- Nie-termiese stralingsprosesse -- Paarproduksie -- Pulsarwindnewels -- Gammastrale -- Kosmiese strale.




A Study of Pulsar Wind Nebulae and Non-thermal Filaments with the NuSTAR Observatory


Book Description

I analyze filament G359.97-0.038 by incorporating broad-band morphological and spectral data from radio (5.5 and 8.3 GHz) and X-ray data with NuSTAR data. I conclude that it is not a PWN but more likely the result of an interaction between the Sgr A East remnant and the nearby molecular cloud. Lastly I observe the filament G0.13-0.11, likely a PWN elongated by the ram pressure from the nearby Radio Arc.







Pulsar Wind Nebulae with H.E.S.S.: Establishing a Connection Between High-power Pulsars and Very-high-energy Gamma-ray Sources


Book Description

Pulsars energise particles into lighthouse pencil beams and create extended relativistic outflows, pulsar wind nebulae (PWNe). In the very-high-energy (VHE) gamma-ray wave band, these PWNe represent to date the most populous class of Galactic sources. Nevertheless, the details of the energy conversion mechanisms in the vicinity of pulsars are not well understood, nor is it known which pulsars are able to drive PWNe and emit high-energy radiation. Due to its large field of view and unprecedented sensitivity, H.E.S.S. is the first instrument to allow for deep surveys of the Galactic plane in VHE gamma rays. This work presents the first ever systematic investigation of the connection of VHE gamma-ray sources and PWNe. Besides presenting two new candidate PWNe detected in this search, it is shown that pulsars with large spin-down energy flux are indeed with high probability associated with VHE gamma-ray sources, implying the existence of an efficient mechanism by which a large fraction of pulsar spin-down energy is converted into kinetic energy of particles. The results presented here make it very likely that future more sensitive VHE gamma-ray instruments will detect a rapidly increasing number of lower-luminosity PWNe.