Substituent Effects in Organic Polarography


Book Description

During the forty years which have passed since Masuzo Shikata published his paper on the reduction of nitrobenzene at a dropping mercury electrode, the number of polarographic studies of organic compounds in the literature has risen to several thousands. The ever increasing amount of experimental data was in need of some unified method of classification which would yield unambiguous and possibly complete information on the polarographic behavior of organic substances. Dr. Zuman's book presents an original attempt to meet this need by providing a system based on correlations between the polaro graphic half-wave potentials of organic depolarizers and their Hammett constants. I consider this a very happy conception, for, more than any other book yet written, it brings polarography nearer to the organic chemist; and it will undoubtedly convince him that, in its application to his subject, the method is more than a mere analytical tool. The author hardly needs any introduction. During many years of research in the field of organic polarography, he has published numerous papers on a variety of problems; his latest interest is the application of the Hammett-Taft equation to polarographic measure ments, in which he has done pioneering work. It remains for me to hope that this book, which opens up new prospects for the fruitful application of polarography, may inspire vii viii Foreword some reader with useful ideas in his search for new paths in his research problems.




Topics In Organic Polarography


Book Description

Even though the nwnber of requests for reprints and the number of quotations in the Science Citation Index has indicated an ever-increasing interest in topics of organic polarography, I have often felt that the reason that some work is less known may well be because the papers were published in less accessible journals. Therefore, I was pleased when I was asked to prepare a selection of my papers on organic polarography for reprinting. This collection of papers may indicate some of the possibilities offered by polarography in the study of properties of organic compounds. The fact that the papers are published in one volume, not only makes the information more easily accessible for the reader, but also enables a direct comparison of related topics. The mode of selection is discussed in the Introduction. The papers reprinted in this volume are mostly based on work carried out in the J. Heyrovsky Institute of Polarography of the Czechoslovak Academy of Sciences in Prague, in cooperation with my co-workers. I would like to take this opportunity of thanking all of them for the pleasure I got from this cooperation on the solution of varying problems of organic electrochemistry .




Electrochemical Dictionary


Book Description

This second edition of the highly successful dictionary offers more than 300 new or revised terms. A distinguished panel of electrochemists provides up-to-date, broad and authoritative coverage of 3000 terms most used in electrochemistry and energy research as well as related fields, including relevant areas of physics and engineering. Each entry supplies a clear and precise explanation of the term and provides references to the most useful reviews, books and original papers to enable readers to pursue a deeper understanding if so desired. Almost 600 figures and illustrations elaborate the textual definitions. The “Electrochemical Dictionary” also contains biographical entries of people who have substantially contributed to electrochemistry. From reviews of the first edition: ‘the creators of the Electrochemical Dictionary have done a laudable job to ensure that each definition included here has been defined in precise terms in a clear and readily accessible style’ (The Electric Review) ‘It is a must for any scientific library, and a personal purchase can be strongly suggested to anybody interested in electrochemistry’ (Journal of Solid State Electrochemistry) ‘The text is readable, intelligible and very well written’ (Reference Reviews)




Comprehensive Treatise of Electrochemistry


Book Description

It is now time for a comprehensive treatise to look at the whole field of electrochemistry. The present treatise was conceived in 1974, and the earliest invitations to authors for contributions were made in 1975. The completion of the early volumes has been delayed by various factors. There has been no attempt to make each article emphasize the most recent situation at the expense of an overall statement of the modern view. This treatise is not a collection of articles from Recent Advances in Electrochemistry or Modern Aspects of Electrochemistry. It is an attempt at making a mature statement about the present position in the vast area of what is best looked at as a new interdisciplinary field. Texas A & M University J. O'M. Bockris University of Ottawa B. E. Conway Case Western Reserve University Ernest Yeager Texas A & M University Ralph E. White Preface to Volume 8 Experimental methods in electrochemistry are becoming more diverse. This volume describes many of the new techniques that are being used as well as some of the well-established techniques. It begins with two chapters (1 and 2) on electronic instrumentation and methods for utilization of microcomputers for experimental data acquisition and reduction. Next, two chapters (3 and 4) on classical methods of electrochemical analysis are presented: ion selective electrodes and polarography.




Progress in Physical Organic Chemistry


Book Description

Progress in Physical Organic Chemistry is dedicated to reviewing the latest investigations into organic chemistry that use quantitative and mathematical methods. These reviews help readers understand the importance of individual discoveries and what they mean to the field as a whole. Moreover, the authors, leading experts in their fields, offer unique and thought-provoking perspectives on the current state of the science and its future directions. With so many new findings published in a broad range of journals, Progress in Physical Organic Chemistry fills the need for a central resource that presents, analyzes, and contextualizes the major advances in the field. The articles published in Progress in Physical Organic Chemistry are not only of interest to scientists working in physical organic chemistry, but also scientists working in the many subdisciplines of chemistry in which physical organic chemistry approaches are now applied, such as biochemistry, pharmaceutical chemistry, and materials and polymer science. Among the topics explored in this series are reaction mechanisms; reactive intermediates; combinatorial strategies; novel structures; spectroscopy; chemistry at interfaces; stereochemistry; conformational analysis; quantum chemical studies; structure-reactivity relationships; solvent, isotope and solid-state effects; long-lived charged, sextet or open-shell species; magnetic, non-linear optical and conducting molecules; and molecular recognition.




Practical Polarography


Book Description

Practical Polarography: An Introduction for Chemistry Students provides information pertinent to the fundamental aspects of practical polarography. This book presents the developments in polarography and provides descriptions and procedures that should be readily available for use with any available polarograph. Organized into eight chapters, this book begins with an overview of polarography that is widely employed in chemical analysis because the current-voltage curves show both the quantitative and qualitative composition of the solution. This text then explains the electrode in polarographic electrolysis, which consists either of a mercury pool at the bottom of the electrolytic cell that contains the solution under test, or of a special type of electrode of known potential. Other chapters consider the polarographic reduction of some metal ions and of some organic substances. The final chapter deals with the tables containing selected data of half-wave potentials measured against a saturated calomel electrode at 20-25°C. This book is a valuable resource for students, technicians, and chemists.




Aromatic Thiols and Their Derivatives


Book Description

This book is devoted to the synthetic and physical chemistry of aromatic thiols and their closest derivatives, sulfides, sulfoxides, sulfones, including those substituted by various functional groups such as acyl and thioacyl, alkoxide, ester, hydroxyl and halogens. In some cases, for comparison, selenium and oxygen analogues are also detailed. The main focus of the book is on synthetic methods, both traditional and new, based on the use of transition metals as catalysts, as well as the reactivity of the compounds obtained. Its addition to the influence of conformational and electronic factors on spectral (NMR, IR, UV, NQR) and electrochemical characteristics of the compounds is presented. Finally, the book describes the application of aromatic thiols and their derivatives as drug precursors, high-tech materials, building blocks for organic synthesis, analytical reagents and additives for oils and fuels. It is a useful handbook for all those interested in organosulfur chemistry.




Electrochemistry of Biological Molecules


Book Description

Electrochemistry of Biological Molecules presents a fairly complete summary of the electrochemistry of the more important groups of nitrogen heterocyclic molecules including purines and pyrimidines and their nucleosides and nucleotides, polynucleotides and nucleic acids, pteridines, flavins, pyrroles, porphyrins, and pyridines. Topics covered range from the theory and instrumentation of electrochemistry to various biological molecules, including pteridines, isoalloxazines, flavins, and flavin nucleotides. Comprised of nine chapters, this book begins with an overview of electrochemical techniques and their use to study biological materials, followed by a discussion on the theory and instrumentation of electrochemistry, with emphasis on their significance and utility as well aa their principles and circuits. Subsequent chapters explore nitrogen heterocyclic molecules such as purines and pyrimidines and their nucleosides and nucleotides, polynucleotides and nucleic acids, pteridines, flavins, pyrroles, porphyrins, and pyridines. The electrochemistry of biologically important pyridines is considered. This monograph should be of value to electrochemists, biochemists, and biologists.







Organic Polarographic Analysis


Book Description

Organic Polarographic Analysis deals with the applications of polarography in the analysis of organic compounds. The principles, techniques, and apparatus of organic polarography are discussed, and some selected examples of the applications of organic polarography in various fields of applied chemistry are presented. The direct methods in which the sample is simply dissolved in a suitable supporting electrolyte are also considered. This book consists of 11 chapters and opens with an overview of the basic principles of the polarographic method of analysis, as well as the different types of polarographic limiting currents and of electrode processes. The reader is then introduced to the instruments used in polarography, including the polarograph, dropping and reference electrodes, and electrolysis vessels. Experimental techniques in organic polarography are also described, along with some of its practical applications in fields such as pharmacy, medicine, and biochemistry. Subsequent chapters explore polarographic methods used in the analysis of organic substances, including direct and indirect methods of analysis; separation techniques; and the use of polarography in organic synthesis and isolation of natural products. This monograph is written primarily for organic and analytical chemists.