Waste Management


Book Description

Waste Management: A Reference Handbook provides an in-depth look at the waste management industry in the United States and elsewhere, including such issues as food scraps, recycling, and other kinds of solid waste. Waste Management: A Reference Handbook covers the topic of waste management from the earliest pages of human history to the present day. Chapters One and Two provide a historical background of the topic and a review of current problems, controversies, and solutions. The remainder of the book consists of chapters that aid readers in continuing their research on the topic, such as an extended annotated bibliography, a chronology, a glossary, lists of noteworthy individuals and organizations in the field, and important data and documents. The variety of resources provided, such as further reading, perspective essays about waste management, a historical timeline, and useful terms in the industry, differentiates this book from others in the field. It is intended for readers of high school through the community college level, along with adult readers who may be interested in the topic.




Meeting Policy Challenges for a Sustainable Bioeconomy


Book Description

This publication investigates key aspects surrounding the sustainability of bioeconomy development: the use of biomass as feedstock for future production; the design and building of biorefineries for the manufacture of a range of fuels, chemicals and materials, and also for electricity generation.




Encyclopedia of Renewable Energy, Sustainability and the Environment


Book Description

Encyclopedia of Renewable Energy, Sustainability and the Environment, Four Volume Set comprehensively covers all renewable energy resources, including wind, solar, hydro, biomass, geothermal energy, and nuclear power, to name a few. In addition to covering the breadth of renewable energy resources at a fundamental level, this encyclopedia delves into the utilization and ideal applications of each resource and assesses them from environmental, economic, and policy standpoints. This book will serve as an ideal introduction to any renewable energy source for students, while also allowing them to learn about a topic in more depth and explore related topics, all in a single resource.Instructors, researchers, and industry professionals will also benefit from this comprehensive reference. - Covers all renewable energy technologies in one comprehensive resource - Details renewable energies' processes, from production to utilization in a single encyclopedia - Organizes topics into concise, consistently formatted chapters, perfect for readers who are new to the field - Assesses economic challenges faced to implement each type of renewable energy - Addresses the challenges of replacing fossil fuels with renewables and covers the environmental impacts of each renewable energy




Bioenergy and Land Use Change


Book Description

Although bioenergy is a renewable energy source, it is not without impact on the environment. Both the cultivation of crops specifically for use as biofuels and the use of agricultural byproducts to generate energy changes the landscape, affects ecosystems, and impacts the climate. Bioenergy and Land Use Change focuses on regional and global assessments of land use change related to bioenergy and the environmental impacts. This interdisciplinary volume provides both high level reviews and in-depth analyses on specific topics. Volume highlights include: Land use change concepts, economics, and modeling Relationships between bioenergy and land use change Impacts on soil carbon, soil health, water quality, and the hydrologic cycle Impacts on natural capital and ecosystem services Effects of bioenergy on direct and indirect greenhouse gas emissions Biogeochemical and biogeophysical climate regulation Uncertainties and challenges associated with land use change quantification and environmental impact assessments Bioenergy and Land Use Change is a valuable resource for professionals, researchers, and graduate students from a wide variety of fields including energy, economics, ecology, geography, agricultural science, geoscience, and environmental science. Read an interview with the editors to find out more: https://eos.org/editors-vox/bioenergys-impacts-on-the-landscape




Advancements in Biomass Feedstock Preprocessing: Conversion Ready Feedstocks


Book Description

The success of lignocellulosic biofuels and biochemical industries depends upon an economic and reliable supply of quality biomass. However, research and development efforts have historically focused on the utilization of agriculturally-derived, cellulosic feedstocks without consideration of their low energy density, high variations in physical and chemical characteristics and potential supply risks in terms of availability and affordability. This Research Topic will explore strategies that enable supply chain improvements in biomass quality and consistency through blending, preprocessing, diversity and landscape design for development of conversion-ready, lignocellulosic feedstocks for production of biofuels and bio-products. Biomass variability has proven a formidable challenge to the emerging biorefining industry, impeding continuous operation and reducing yields required for economical production of lignocellulosic biofuels at scale. Conventional supply systems lack the preprocessing capabilities necessary to ensure consistent biomass feedstocks with physical and chemical properties that are compatible with supply chain operations and conversion processes. Direct coupling of conventional feedstock supply systems with sophisticated conversion systems has reduced the operability of biorefining processes to less than 50%. As the bioeconomy grows, the inherent variability of biomass resources cannot be managed by passive means alone. As such, there is a need to fully recognize the magnitude of biomass variability and uncertainty, as well as the cost of failing to design feedstock supply systems that can mitigate biomass variability and uncertainty. A paradigm shift is needed, from biorefinery designs using raw, single-resource biomass, to advanced feedstock supply systems that harness diverse biomass resources to enable supply chain resilience and development of conversion-ready feedstocks. Blending and preprocessing (e.g., drying, sorting, sizing, fractionation, leaching, densification, etc.) can mitigate variable quality and performance in diverse resources when integrated with downstream conversion systems. Decoupling feedstock supply from biorefining provides an opportunity to manage supply risks and incorporate value-added upgrading to develop feedstocks with improved convertibility and/ or market fungibility. Conversion-ready feedstocks have undergone the required preprocessing to ensure compatibility with conversion and utilization prior to delivery at the biorefinery and represent lignocellulosic biomass with physical and chemical properties that are tailored to meet the requirements of industrially-relevant handling and conversion systems.




Principles and Applications of Fermentation Technology


Book Description

The book covers all aspects of fermentation technology such as principles, reaction kinetics, scaling up of processes, and applications. The 20 chapters written by subject matter experts are divided into two parts: Principles and Applications. In the first part subjects covered include: Modelling and kinetics of fermentation technology Sterilization techniques used in fermentation processes Design and types of bioreactors used in fermentation technology Recent advances and future prospect of fermentation technology The second part subjects covered include: Lactic acid and ethanol production using fermentation technology Various industrial value-added product biosynthesis using fermentation technology Microbial cyp450 production and its industrial application Polyunsaturated fatty acid production through solid state fermentation Application of oleaginous yeast for lignocellulosic biomass based single cell oil production Utilization of micro-algal biomass for bioethanol production Poly-lactide production from lactic acid through fermentation technology Bacterial cellulose and its potential impact on industrial applications







Biomass Supply Chains for Bioenergy and Biorefining


Book Description

Biomass Supply Chains for Bioenergy and Biorefining highlights the emergence of energy generation through the use of biomass and the ways it is becoming more widely used. The supply chains that produce the feedstocks, harvest, transport, store, and prepare them for combustion or refinement into other forms of fuel are long and complex, often differing from feedstock to feedstock. Biomass Supply Chains for Bioenergy and Biorefining considers every aspect of these supply chains, including their design, management, socioeconomic, and environmental impacts. The first part of the book introduces supply chains, biomass feedstocks, and their analysis, while the second part looks at the harvesting, handling, storage, and transportation of biomass. The third part studies the modeling of supply chains and their management, with the final section discussing, in minute detail, the supply chains involved in the production and usage of individual feedstocks, such as wood and sugar starches, oil crops, industrial biomass wastes, and municipal sewage stocks. - Focuses on the complex supply chains of the various potential feedstocks for biomass energy generation - Studies a wide range of biomass feedstocks, including woody energy crops, sugar and starch crops, lignocellulosic crops, oil crops, grass crops, algae, and biomass waste - Reviews the modeling and optimization, standards, quality control and traceability, socioeconomic, and environmental impacts of supply chains




Biomass Preprocessing and Pretreatments for Production of Biofuels


Book Description

Engineering the physical, chemical, and energy properties of lignocellulosic biomass is important to produce high-quality consistent feedstocks with reduced variability for biofuels production. The emphasis of this book will be the beneficial impacts that mechanical, chemical, and thermal preprocessing methods can have on lignocellulosic biomass quality attributes or specifications for solid and liquid biofuels and biopower production technologies. "Preprocessing" refers to treatments that can occur at a distance from conversion and result in an intermediate with added value, with improved conversion performance and efficiency. This book explores the effects of mechanical, chemical, and thermal preprocessing methods on lignocellulosic biomass physical properties and chemical composition and their suitability for biofuels production. For example, biomass mechanical preprocessing methods like size reduction (which impacts the particle size and distribution) and densification (density and size and shape) are important for feedstocks to meet the quality requirements for both biochemical and thermochemical conversion methods like enzymatic conversion, gasification, and pyrolysis process. Thermal preprocessing methods like drying, deep drying, torrefaction, steam explosion, hydrothermal carbonization, and hydrothermal liquefaction effect feedstock's proximate, ultimate and energy property, making biomass suitable for both solid and liquid fuel production. Chemical preprocessing which includes washing, leaching, acid, alkali, and ammonia fiber explosion that can enable biochemical composition, such as modification of lignin and hemicellulose, and impacts the enzymatic conversion application for liquid fuels production. This book also explores the integration of these preprocessing technologies to achieve desired lignocellulosic biomass quality attributes for biofuels production.




Climate Intervention


Book Description

The signals are everywhere that our planet is experiencing significant climate change. It is clear that we need to reduce the emissions of carbon dioxide and other greenhouse gases from our atmosphere if we want to avoid greatly increased risk of damage from climate change. Aggressively pursuing a program of emissions abatement or mitigation will show results over a timescale of many decades. How do we actively remove carbon dioxide from the atmosphere to make a bigger difference more quickly? As one of a two-book report, this volume of Climate Intervention discusses CDR, the carbon dioxide removal of greenhouse gas emissions from the atmosphere and sequestration of it in perpetuity. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration introduces possible CDR approaches and then discusses them in depth. Land management practices, such as low-till agriculture, reforestation and afforestation, ocean iron fertilization, and land-and-ocean-based accelerated weathering, could amplify the rates of processes that are already occurring as part of the natural carbon cycle. Other CDR approaches, such as bioenergy with carbon capture and sequestration, direct air capture and sequestration, and traditional carbon capture and sequestration, seek to capture CO2 from the atmosphere and dispose of it by pumping it underground at high pressure. This book looks at the pros and cons of these options and estimates possible rates of removal and total amounts that might be removed via these methods. With whatever portfolio of technologies the transition is achieved, eliminating the carbon dioxide emissions from the global energy and transportation systems will pose an enormous technical, economic, and social challenge that will likely take decades of concerted effort to achieve. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration will help to better understand the potential cost and performance of CDR strategies to inform debate and decision making as we work to stabilize and reduce atmospheric concentrations of carbon dioxide.