Superior-Order Curvature-Correction Techniques for Voltage References


Book Description

Voltage references represent important VLSI structures, having multiple appli- tions in analog and mixed-signal circuits: measurement equipment, voltage re- lators, temperature sensors, data acquisition systems, memories, or AD and DA converters. Operating as a subcircuit in a complex system, an important requi- ment for this class of circuits is represented by the possibility of implementation in the existing technology, using the available active and passive devices. The most important performances of a voltage reference circuit are represented by temperature behavior, power supply rejection ratio, transient response and, for the latest designs, by low-power low-voltage operation. Depending on the load - quirements, the output of the circuit can be regulated or unregulated. In order to reduce the sensitivity of the reference voltage with respect to the supply voltage variations, modi?ed cascode structures can be implemented, a trade-off between line regulation and low-voltage operation being necessary in this case. A large bandwidth of the voltage reference improves the transient behavior of the circuit, implying also a good noise rejection. Referringtothe possibilities ofimplementinga voltagereferencecircuit,two d- ferent approaches could be identi?ed: voltage-mode and current-mode topologies, being also possible to design a mixed-mode voltage reference.




Artificial Neural Networks - ICANN 2010


Book Description

th This volume is part of the three-volume proceedings of the 20 International Conference on Arti?cial Neural Networks (ICANN 2010) that was held in Th- saloniki, Greece during September 15–18, 2010. ICANN is an annual meeting sponsored by the European Neural Network Society (ENNS) in cooperation with the International Neural Network So- ety (INNS) and the Japanese Neural Network Society (JNNS). This series of conferences has been held annually since 1991 in Europe, covering the ?eld of neurocomputing, learning systems and other related areas. As in the past 19 events, ICANN 2010 provided a distinguished, lively and interdisciplinary discussion forum for researches and scientists from around the globe. Ito?eredagoodchanceto discussthe latestadvancesofresearchandalso all the developments and applications in the area of Arti?cial Neural Networks (ANNs). ANNs provide an information processing structure inspired by biolo- cal nervous systems and they consist of a large number of highly interconnected processing elements (neurons). Each neuron is a simple processor with a limited computing capacity typically restricted to a rule for combining input signals (utilizing an activation function) in order to calculate the output one. Output signalsmaybesenttootherunitsalongconnectionsknownasweightsthatexcite or inhibit the signal being communicated. ANNs have the ability “to learn” by example (a large volume of cases) through several iterations without requiring a priori ?xed knowledge of the relationships between process parameters.







CAS ... Proceedings


Book Description




Radiation Tolerant Electronics


Book Description

Research on radiation-tolerant electronics has increased rapidly over the past few years, resulting in many interesting approaches to modeling radiation effects and designing radiation-hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation-hardened electronics for space applications, high-energy physics experiments such as those on the Large Hadron Collider at CERN, and many terrestrial nuclear applications including nuclear energy and nuclear safety. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their susceptibility to ionizing radiation has raised many exciting challenges, which are expected to drive research in the coming decade. In this book we highlight recent breakthroughs in the study of radiation effects in advanced semiconductor devices, as well as in high-performance analog, mixed signal, RF, and digital integrated circuits. We also focus on advances in embedded radiation hardening in both FPGA and microcontroller systems and apply radiation-hardened embedded systems for cryptography and image processing, targeting space applications.







The Potentiometer Handbook


Book Description




High Voltage Engineering Fundamentals


Book Description

Power transfer for large systems depends on high system voltages. The basics of high voltage laboratory techniques and phenomena, together with the principles governing the design of high voltage insulation, are covered in this book for students, utility engineers, designers and operators of high voltage equipment. In this new edition the text has been entirely revised to reflect current practice. Major changes include coverage of the latest instrumentation, the use of electronegative gases such as sulfur hexafluoride, modern diagnostic techniques, and high voltage testing procedures with statistical approaches. - A classic text on high voltage engineering - Entirely revised to bring you up-to-date with current practice - Benefit from expanded sections on testing and diagnostic techniques




Voltage References


Book Description

The foremost tutorial resource on the design of integrated voltage references, from theory to real-life practice. Voltage References covers the conceptual history and scope of practical design issues behind marketable and precision integrated voltage references. Effectual for professionals and understandable to novice designers, this book provides a familiarity with simple rudimentary design as well as precision state-of-the-art ones. Also covered are the design implications on SOC solutions, and low-voltage, low-power, and noisy mixed-signal environments. Enhanced with design examples, this volume will increase the reader's understanding of analog integrated circuits and the issues involved in producing commercially marketable and reliable devices. Primary topics include: The complete design of integrated voltage references Basics of voltage references, from diodes and current mirrors to temperature-dependent current references Design of zero-order, first-order, second-order, and higher-order reference circuits State-of-the-art curvature-correction techniques Practical design issues of integrated references, from error sources and circuit topologies to trimming circuits, package-shift effects, and characterization Voltage References is an essential book for IC designers, product engineers, test engineers, researchers, and professors, as well as undergraduate and graduate students.




Analysis and Design of Analog Integrated Circuits


Book Description

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Authoritative and comprehensive textbook on the fundamentals of analog integrated circuits, with learning aids included throughout Written in an accessible style to ensure complex content can be appreciated by both students and professionals, this Sixth Edition of Analysis and Design of Analog Integrated Circuits is a highly comprehensive textbook on analog design, offering in-depth coverage of the fundamentals of circuits in a single volume. To aid in reader comprehension and retention, supplementary material includes end of chapter problems, plus a Solution Manual for instructors. In addition to the well-established concepts, this Sixth Edition introduces a new super-source follower circuit and its large-signal behavior, frequency response, stability, and noise properties. New material also introduces replica biasing, describes and analyzes two op amps with replica biasing, and provides coverage of weighted zero-value time constants as a method to estimate the location of dominant zeros, pole-zero doublets (including their effect on settling time and three examples of circuits that create doublets), the effect of feedback on pole-zero doublets, and MOS transistor noise performance (including a thorough treatment on thermally induced gate noise). Providing complete coverage of the subject, Analysis and Design of Analog Integrated Circuits serves as a valuable reference for readers from many different types of backgrounds, including senior undergraduates and first-year graduate students in electrical and computer engineering, along with analog integrated-circuit designers.