SUPERMARKET SALES ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI


Book Description

The dataset used in this project consists of the growth of supermarkets with high market competitions in most populated cities. The dataset is one of the historical sales of supermarket company which has recorded in 3 different branches for 3 months data. Predictive data analytics methods are easy to apply with this dataset. Attribute information in the dataset are as follows: Invoice id: Computer generated sales slip invoice identification number; Branch: Branch of supercenter (3 branches are available identified by A, B and C); City: Location of supercenters; Customer type: Type of customers, recorded by Members for customers using member card and Normal for without member card; Gender: Gender type of customer; Product line: General item categorization groups - Electronic accessories, Fashion accessories, Food and beverages, Health and beauty, Home and lifestyle, Sports and travel; Unit price: Price of each product in $; Quantity: Number of products purchased by customer; Tax: 5% tax fee for customer buying; Total: Total price including tax; Date: Date of purchase (Record available from January 2019 to March 2019); Time: Purchase time (10am to 9pm); Payment: Payment used by customer for purchase (3 methods are available – Cash, Credit card and Ewallet); COGS: Cost of goods sold; Gross margin percentage: Gross margin percentage; Gross income: Gross income; and Rating: Customer stratification rating on their overall shopping experience (On a scale of 1 to 10). In this project, you will perform predicting rating using machine learning. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.




5 FIVE DATA SCIENCE PROJECTS FOR ANALYSIS, CLASSIFICATION, PREDICTION, AND SENTIMENT ANALYSIS WITH PYTHON GUI


Book Description

PROJECT 1: SUPERMARKET SALES ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project consists of the growth of supermarkets with high market competitions in most populated cities. The dataset is one of the historical sales of supermarket company which has recorded in 3 different branches for 3 months data. Predictive data analytics methods are easy to apply with this dataset. Attribute information in the dataset are as follows: Invoice id: Computer generated sales slip invoice identification number; Branch: Branch of supercenter (3 branches are available identified by A, B and C); City: Location of supercenters; Customer type: Type of customers, recorded by Members for customers using member card and Normal for without member card; Gender: Gender type of customer; Product line: General item categorization groups - Electronic accessories, Fashion accessories, Food and beverages, Health and beauty, Home and lifestyle, Sports and travel; Unit price: Price of each product in $; Quantity: Number of products purchased by customer; Tax: 5% tax fee for customer buying; Total: Total price including tax; Date: Date of purchase (Record available from January 2019 to March 2019); Time: Purchase time (10am to 9pm); Payment: Payment used by customer for purchase (3 methods are available – Cash, Credit card and Ewallet); COGS: Cost of goods sold; Gross margin percentage: Gross margin percentage; Gross income: Gross income; and Rating: Customer stratification rating on their overall shopping experience (On a scale of 1 to 10). In this project, you will perform predicting rating using machine learning. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: DETECTING CYBERBULLYING TWEETS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI As social media usage becomes increasingly prevalent in every age group, a vast majority of citizens rely on this essential medium for day-to-day communication. Social media’s ubiquity means that cyberbullying can effectively impact anyone at any time or anywhere, and the relative anonymity of the internet makes such personal attacks more difficult to stop than traditional bullying. On April 15th, 2020, UNICEF issued a warning in response to the increased risk of cyberbullying during the COVID-19 pandemic due to widespread school closures, increased screen time, and decreased face-to-face social interaction. The statistics of cyberbullying are outright alarming: 36.5% of middle and high school students have felt cyberbullied and 87% have observed cyberbullying, with effects ranging from decreased academic performance to depression to suicidal thoughts. In light of all of this, this dataset contains more than 47000 tweets labelled according to the class of cyberbullying: Age; Ethnicity; Gender; Religion; Other type of cyberbullying; and Not cyberbullying. The data has been balanced in order to contain ~8000 of each class. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, LSTM, and CNN. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: HIGHER EDUCATION STUDENT ACADEMIC PERFORMANCE ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project was collected from the Faculty of Engineering and Faculty of Educational Sciences students in 2019. The purpose is to predict students' end-of-term performances using ML techniques. Attribute information in the dataset are as follows: Student ID; Student Age (1: 18-21, 2: 22-25, 3: above 26); Sex (1: female, 2: male); Graduated high-school type: (1: private, 2: state, 3: other); Scholarship type: (1: None, 2: 25%, 3: 50%, 4: 75%, 5: Full); Additional work: (1: Yes, 2: No); Regular artistic or sports activity: (1: Yes, 2: No); Do you have a partner: (1: Yes, 2: No); Total salary if available (1: USD 135-200, 2: USD 201-270, 3: USD 271-340, 4: USD 341-410, 5: above 410); Transportation to the university: (1: Bus, 2: Private car/taxi, 3: bicycle, 4: Other); Accommodation type in Cyprus: (1: rental, 2: dormitory, 3: with family, 4: Other); Mother's education: (1: primary school, 2: secondary school, 3: high school, 4: university, 5: MSc., 6: Ph.D.); Father's education: (1: primary school, 2: secondary school, 3: high school, 4: university, 5: MSc., 6: Ph.D.); Number of sisters/brothers (if available): (1: 1, 2:, 2, 3: 3, 4: 4, 5: 5 or above); Parental status: (1: married, 2: divorced, 3: died - one of them or both); Mother's occupation: (1: retired, 2: housewife, 3: government officer, 4: private sector employee, 5: self-employment, 6: other); Father's occupation: (1: retired, 2: government officer, 3: private sector employee, 4: self-employment, 5: other); Weekly study hours: (1: None, 2: <5 hours, 3: 6-10 hours, 4: 11-20 hours, 5: more than 20 hours); Reading frequency (non-scientific books/journals): (1: None, 2: Sometimes, 3: Often); Reading frequency (scientific books/journals): (1: None, 2: Sometimes, 3: Often); Attendance to the seminars/conferences related to the department: (1: Yes, 2: No); Impact of your projects/activities on your success: (1: positive, 2: negative, 3: neutral); Attendance to classes (1: always, 2: sometimes, 3: never); Preparation to midterm exams 1: (1: alone, 2: with friends, 3: not applicable); Preparation to midterm exams 2: (1: closest date to the exam, 2: regularly during the semester, 3: never); Taking notes in classes: (1: never, 2: sometimes, 3: always); Listening in classes: (1: never, 2: sometimes, 3: always); Discussion improves my interest and success in the course: (1: never, 2: sometimes, 3: always); Flip-classroom: (1: not useful, 2: useful, 3: not applicable); Cumulative grade point average in the last semester (/4.00): (1: <2.00, 2: 2.00-2.49, 3: 2.50-2.99, 4: 3.00-3.49, 5: above 3.49); Expected Cumulative grade point average in the graduation (/4.00): (1: <2.00, 2: 2.00-2.49, 3: 2.50-2.99, 4: 3.00-3.49, 5: above 3.49); Course ID; and OUTPUT: Grade (0: Fail, 1: DD, 2: DC, 3: CC, 4: CB, 5: BB, 6: BA, 7: AA). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 4: COMPANY BANKRUPTCY ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset was collected from the Taiwan Economic Journal for the years 1999 to 2009. Company bankruptcy was defined based on the business regulations of the Taiwan Stock Exchange. Attribute information in the dataset are as follows: Y - Bankrupt?: Class label; X1 - ROA(C) before interest and depreciation before interest: Return On Total Assets(C); X2 - ROA(A) before interest and % after tax: Return On Total Assets(A); X3 - ROA(B) before interest and depreciation after tax: Return On Total Assets(B); X4 - Operating Gross Margin: Gross Profit/Net Sales; X5 - Realized Sales Gross Margin: Realized Gross Profit/Net Sales; X6 - Operating Profit Rate: Operating Income/Net Sales; X7 - Pre-tax net Interest Rate: Pre-Tax Income/Net Sales; X8 - After-tax net Interest Rate: Net Income/Net Sales; X9 - Non-industry income and expenditure/revenue: Net Non-operating Income Ratio; X10 - Continuous interest rate (after tax): Net Income-Exclude Disposal Gain or Loss/Net Sales; X11 - Operating Expense Rate: Operating Expenses/Net Sales; X12 - Research and development expense rate: (Research and Development Expenses)/Net Sales X13 - Cash flow rate: Cash Flow from Operating/Current Liabilities; X14 - Interest-bearing debt interest rate: Interest-bearing Debt/Equity; X15 - Tax rate (A): Effective Tax Rate; X16 - Net Value Per Share (B): Book Value Per Share(B); X17 - Net Value Per Share (A): Book Value Per Share(A); X18 - Net Value Per Share (C): Book Value Per Share(C); X19 - Persistent EPS in the Last Four Seasons: EPS-Net Income; X20 - Cash Flow Per Share; X21 - Revenue Per Share (Yuan ¥): Sales Per Share; X22 - Operating Profit Per Share (Yuan ¥): Operating Income Per Share; X23 - Per Share Net profit before tax (Yuan ¥): Pretax Income Per Share; X24 - Realized Sales Gross Profit Growth Rate; X25 - Operating Profit Growth Rate: Operating Income Growth; X26 - After-tax Net Profit Growth Rate: Net Income Growth; X27 - Regular Net Profit Growth Rate: Continuing Operating Income after Tax Growth; X28 - Continuous Net Profit Growth Rate: Net Income-Excluding Disposal Gain or Loss Growth; X29 - Total Asset Growth Rate: Total Asset Growth; X30 - Net Value Growth Rate: Total Equity Growth; X31 - Total Asset Return Growth Rate Ratio: Return on Total Asset Growth; X32 - Cash Reinvestment %: Cash Reinvestment Ratio X33 - Current Ratio; X34 - Quick Ratio: Acid Test; X35 - Interest Expense Ratio: Interest Expenses/Total Revenue; X36 - Total debt/Total net worth: Total Liability/Equity Ratio; X37 - Debt ratio %: Liability/Total Assets; X38 - Net worth/Assets: Equity/Total Assets; X39 - Long-term fund suitability ratio (A): (Long-term Liability+Equity)/Fixed Assets; X40 - Borrowing dependency: Cost of Interest-bearing Debt; X41 - Contingent liabilities/Net worth: Contingent Liability/Equity; X42 - Operating profit/Paid-in capital: Operating Income/Capital; X43 - Net profit before tax/Paid-in capital: Pretax Income/Capital; X44 - Inventory and accounts receivable/Net value: (Inventory+Accounts Receivables)/Equity; X45 - Total Asset Turnover; X46 - Accounts Receivable Turnover; X47 - Average Collection Days: Days Receivable Outstanding; X48 - Inventory Turnover Rate (times); X49 - Fixed Assets Turnover Frequency; X50 - Net Worth Turnover Rate (times): Equity Turnover; X51 - Revenue per person: Sales Per Employee; X52 - Operating profit per person: Operation Income Per Employee; X53 - Allocation rate per person: Fixed Assets Per Employee; X54 - Working Capital to Total Assets; X55 - Quick Assets/Total Assets; X56 - Current Assets/Total Assets; X57 - Cash/Total Assets; X58 - Quick Assets/Current Liability; X59 - Cash/Current Liability; X60 - Current Liability to Assets; X61 - Operating Funds to Liability; X62 - Inventory/Working Capital; X63 - Inventory/Current Liability X64 - Current Liabilities/Liability; X65 - Working Capital/Equity; X66 - Current Liabilities/Equity; X67 - Long-term Liability to Current Assets; X68 - Retained Earnings to Total Assets; X69 - Total income/Total expense; X70 - Total expense/Assets; X71 - Current Asset Turnover Rate: Current Assets to Sales; X72 - Quick Asset Turnover Rate: Quick Assets to Sales; X73 - Working capitcal Turnover Rate: Working Capital to Sales; X74 - Cash Turnover Rate: Cash to Sales; X75 - Cash Flow to Sales; X76 - Fixed Assets to Assets; X77 - Current Liability to Liability; X78 - Current Liability to Equity; X79 - Equity to Long-term Liability; X80 - Cash Flow to Total Assets; X81 - Cash Flow to Liability; X82 - CFO to Assets; X83 - Cash Flow to Equity; X84 - Current Liability to Current Assets; X85 - Liability-Assets Flag: 1 if Total Liability exceeds Total Assets, 0 otherwise; X86 - Net Income to Total Assets; X87 - Total assets to GNP price; X88 - No-credit Interval; X89 - Gross Profit to Sales; X90 - Net Income to Stockholder's Equity; X91 - Liability to Equity; X92 - Degree of Financial Leverage (DFL); X93 - Interest Coverage Ratio (Interest expense to EBIT); X94 - Net Income Flag: 1 if Net Income is Negative for the last two years, 0 otherwise; and X95 - Equity to Liabilitys. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 5: DATA SCIENCE FOR RAIN CLASSIFICATION AND PREDICTION WITH PYTHON GUI This dataset contains about 10 years of daily weather observations from many locations across Australia. RainTomorrow is the target variable to predict. You will determine rain or not in the next day. This column is Yes if the rain for that day was 1mm or more. Observations were drawn from numerous weather stations. The daily observations are available from http://www.bom.gov.au/climate/data. The dataset contains 23 attributes. Some of them are as follows: About some of them are: DATE - The date of observation; LOCATION - The common name of the location of the weather station; MINTEMP - The minimum temperature in degrees celsius; MAXTEMP - The maximum temperature in degrees celsius; RAINFALL - The amount of rainfall recorded for the day in mm; EVAPORATION - The so-called Class A pan evaporation (mm) in the 24 hours to 9am; SUNSHINE - The number of hours of bright sunshine in the day; WINDGUESTDIR - The direction of the strongest wind gust in the 24 hours to midnight; WINDGUESTSPEED- The speed (km/h) of the strongest wind gust in the 24 hours to midnight; and WINDDIR9AM - Direction of the wind at 9am. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy.




Python Machine Learning


Book Description

Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.




Data Mining and Data Warehousing


Book Description

Written in lucid language, this valuable textbook brings together fundamental concepts of data mining and data warehousing in a single volume. Important topics including information theory, decision tree, Naïve Bayes classifier, distance metrics, partitioning clustering, associate mining, data marts and operational data store are discussed comprehensively. The textbook is written to cater to the needs of undergraduate students of computer science, engineering and information technology for a course on data mining and data warehousing. The text simplifies the understanding of the concepts through exercises and practical examples. Chapters such as classification, associate mining and cluster analysis are discussed in detail with their practical implementation using Weka and R language data mining tools. Advanced topics including big data analytics, relational data models and NoSQL are discussed in detail. Pedagogical features including unsolved problems and multiple-choice questions are interspersed throughout the book for better understanding.




Introduction to Machine Learning


Book Description

Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments.




Data Mining with Rattle and R


Book Description

Data mining is the art and science of intelligent data analysis. By building knowledge from information, data mining adds considerable value to the ever increasing stores of electronic data that abound today. In performing data mining many decisions need to be made regarding the choice of methodology, the choice of data, the choice of tools, and the choice of algorithms. Throughout this book the reader is introduced to the basic concepts and some of the more popular algorithms of data mining. With a focus on the hands-on end-to-end process for data mining, Williams guides the reader through various capabilities of the easy to use, free, and open source Rattle Data Mining Software built on the sophisticated R Statistical Software. The focus on doing data mining rather than just reading about data mining is refreshing. The book covers data understanding, data preparation, data refinement, model building, model evaluation, and practical deployment. The reader will learn to rapidly deliver a data mining project using software easily installed for free from the Internet. Coupling Rattle with R delivers a very sophisticated data mining environment with all the power, and more, of the many commercial offerings.




Data Mining Techniques


Book Description

Many companies have invested in building large databases and data warehouses capable of storing vast amounts of information. This book offers business, sales and marketing managers a practical guide to accessing such information.




Machine Learning with R


Book Description

Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.




Applied Predictive Analytics


Book Description

Learn the art and science of predictive analytics — techniques that get results Predictive analytics is what translates big data into meaningful, usable business information. Written by a leading expert in the field, this guide examines the science of the underlying algorithms as well as the principles and best practices that govern the art of predictive analytics. It clearly explains the theory behind predictive analytics, teaches the methods, principles, and techniques for conducting predictive analytics projects, and offers tips and tricks that are essential for successful predictive modeling. Hands-on examples and case studies are included. The ability to successfully apply predictive analytics enables businesses to effectively interpret big data; essential for competition today This guide teaches not only the principles of predictive analytics, but also how to apply them to achieve real, pragmatic solutions Explains methods, principles, and techniques for conducting predictive analytics projects from start to finish Illustrates each technique with hands-on examples and includes as series of in-depth case studies that apply predictive analytics to common business scenarios A companion website provides all the data sets used to generate the examples as well as a free trial version of software Applied Predictive Analytics arms data and business analysts and business managers with the tools they need to interpret and capitalize on big data.




Ant Colony Optimization


Book Description

An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.