Surface Design: Applications in Bioscience and Nanotechnology


Book Description

This carefully selected balance of tutorial-like review chapters and advanced research covers hot topics in the field of biointerfaces, biosensing, nanoparticles at interfaces, and functionalized quantum dots. It also includes chapters arising from non-published work with topics such as surface design and their applications, as well as new developments in analytical tools for materials science and life science. Based on the very close and complementary collaboration of three distinguished leading research groups, this book highlights recent advances in the field ranging from synthesis and fabrication of organic and polymeric materials, surface and interface science to advanced analytical methods. It thus addresses new concepts in micro- and nanofabrication, bio-nanotechnology, biosensors and the necessary compositional and structural analysis. Particular attention is paid throughout to complex hierarchical interface architectures and possible applications of the chemical and physical methodologies discussed, covering bio-diagnostics, novel biosensors and adhesion science. With its unique combination of expertise from chemistry, physics, biology, surface science and engineering, this is a valuable companion for students, practitioners and established experts.




Microbial Nanotechnology


Book Description

Applications of microbial nanotechnology are currently emerging with new areas being explored. Biosynthesis of nanomaterials by microorganisms is a recently attracting interest as a new, exciting approach towards the development of ‘greener’ nanomanufacturing compared to traditional chemical and physical approaches. This book will cover recent advances of microbial nanotechnology in agriculture, industry, and health sectors.




Nano-Bio-Sensing


Book Description

The application of circuits and systems and engineering principles to problems in the medicine has led to the emergence of biomedical circuits and systems as an exciting and rapidly growing area of research. Nanotechnology provides new nano-structured materials with amazing properties. The properties offered by nanomaterials can be applied to develop advanced instrumentation for biomedical diagnostics and personalized therapy, as well as bio-sensing in the environment. Biotechnology provides new biochemical materials with novel properties to be applied to develop new performances in sensing techniques. These advancements in Nano- and Bio- technologies will lead to new concepts and applications for nano-bio-sensing systems. This book offers an invaluable reference to the state-of-the-art applications of nano-bio-sensing. It brings together expertise of researchers from the fields of nano-electronics and bio-technology, providing multidisciplinary content from nano-structures fabrication to bio-sensing applications.




Nanostructured Thin Films and Surfaces


Book Description

The book series Nanomaterials for the Life Sciences, provides an in-depth overview of all nanomaterial types and their uses in the life sciences. Each volume is dedicated to a specific material class and covers fundamentals, synthesis and characterization strategies, structure-property relationships and biomedical applications. The series brings nanomaterials to the Life Scientists and life science to the Materials Scientists so that synergies are seen and developed to the fullest. Written by international experts of various facets of this exciting field of research, the series is aimed at scientists of the following disciplines: biology, chemistry, materials science, physics, bioengineering, and medicine, together with cell biology, biomedical engineering, pharmaceutical chemistry, and toxicology, both in academia and fundamental research as well as in pharmaceutical companies. VOLUME 5 - Nanostructured Thin Films and Surfaces




Surface Engineering of Polymeric Biomaterials


Book Description

Biomaterials work in contact with living matter and this gives a number of specific requirements for their surface properties, such as bioinertness or bioactivity, antibiofouling, and so on. Surface engineering based on physical, chemical, physical-chemical, biochemical or biological principles is important for the preparation of biomaterials with the desired biocontact properties. This book helps the reader gain the knowledge to enable them to work in such a rapidly developing area, with a comprehensive list of references given for each chapter. Strategies for tailoring the biological response through the creation of biomaterial surfaces resistant to fouling are discussed. Methods of eliciting specific biomolecular interactions that can be further combined with patterning techniques to engineer adhesive areas in a noninteractive background are also covered. The theoretical basis of surface engineering for improvement of biocontact properties of polymeric biomaterials as well as the current state-of-the-art of the surface engineering of polymeric biomaterials are presented. The book also includes information on the most used conventional and advanced surface engineering methods. The book is targeted at researchers, post-doctorates, graduate students, and those already working in the field of biomaterials with a special interest in the creation of polymeric materials with improved biocontact properties via surface engineering.




Plasma Biosciences and Medicine


Book Description

This book describes the updates that have been made in the field of Plasma Biosciences and Medicine over the past few years. This book provides detailed introduction and includes recent research information on plasma sources and their biological and medical applications. The opening chapters discuss plasmas physics and chemistry and plasma-activated liquids. The later part of the book discusses emerging application in medicine and biology. This book also provides valuable clinical insights into the treatment of ulcerations, wounds, cancer, dentistry, or the use of cold plasma in health and hygiene. Main target audience of this book are researchers, graduate and undergraduate students, government agencies, academicians’, engineers, biologists, medical doctor, biochemists, and industries.




Surface and Interfacial Forces


Book Description

This systematic introduction to the topic includes theoretical concepts to help readers understand and predict surface forces, while also integrating experimental techniques and practical applications with up-to-date examples plus motivating exercises. Starting with intermolecular forces, the authors discuss different surfaces forces, with a major part devoted to surface forces between solid surfaces in liquid media. In addition, they cover surface forces between liquid-vapor interfaces and between liquid-liquid interfaces.




Comprehensive Biomaterials II


Book Description

Comprehensive Biomaterials II, Second Edition, Seven Volume Set brings together the myriad facets of biomaterials into one expertly-written series of edited volumes. Articles address the current status of nearly all biomaterials in the field, their strengths and weaknesses, their future prospects, appropriate analytical methods and testing, device applications and performance, emerging candidate materials as competitors and disruptive technologies, research and development, regulatory management, commercial aspects, and applications, including medical applications. Detailed coverage is given to both new and emerging areas and the latest research in more traditional areas of the field. Particular attention is given to those areas in which major recent developments have taken place. This new edition, with 75% new or updated articles, will provide biomedical scientists in industry, government, academia, and research organizations with an accurate perspective on the field in a manner that is both accessible and thorough. Reviews the current status of nearly all biomaterials in the field by analyzing their strengths and weaknesses, performance, and future prospects Covers all significant emerging technologies in areas such as 3D printing of tissues, organs and scaffolds, cell encapsulation; multimodal delivery, cancer/vaccine - biomaterial applications, neural interface understanding, materials used for in situ imaging, and infection prevention and treatment Effectively describes the many modern aspects of biomaterials from basic science, to clinical applications




Crystallography and Surface Structure


Book Description

In den Oberflächen- und Nanowissenschaften ist ein fundiertes Verständnis lokaler Geometrie und Symmetrie von Kristallen und deren Oberflächen von entscheidender Bedeutung, da die Kristallstruktur viele physikalische und chemische Parameter mitbestimmt. Studenten und Forscher in Physik, Chemie und Materialwissenschaften erhalten hierzu mit dem vorliegenden Buch sowohl eine wertvolle Einführung wie auch ein nützliches Nachschlagewerk. Das Buch führt insbesondere scheinbar disparate Beschreibungen und Notationen zusammen, die ständig von Oberflächen- und Nanowissenschaftlern benötigt werden. Professor Hermann ist als Wissenschaftler im Bereich der theoretischen Oberflächenphysik ausgewiesen und bekannt als Koautor der NIST Surface Structure Database (SSD), einer absoluten Referenz in der Struktur- und Oberflächenwissenschaft. Seine Arbeiten zur Oberflächenvisualisierung dokumentiert er auch in diesem Buch, in dem aufwändige Grafiken der zahlreichen Beispiele die mathematisch formal gewählte Herangehensweise illustrieren. Übungen mit unterschiedlichem Schwierigkeitsgrad - von einfachen Fragen bis zu kleinen Forschungsprojekten - regen die Diskussion zu den unterschiedlichen Themen an.




Advances and Applications Through Fungal Nanobiotechnology


Book Description

​​Fungal nanobiotechnology has emerged as one of the key technologies, and an eco-friendly, as a source of food and harnessed to ferment and preserve foods and beverages, as well as applications in human health (antibiotics, anti-cholesterol statins, and immunosuppressive agents), while industry has used fungi for large-scale production of enzymes, acids, biosurfactants, and to manage fungal disease in crops and pest control. With the harnessing of nanotechnology, fungi have grown increasingly important by providing a greener alternative to chemically synthesized nanoparticles.