EPA Publications Bibliography


Book Description







Calendar Year 2000 Groundwater Monitoring Report for the Groundwater Protection Program, U.S. Department of Energy, Y-12 National Security Complex Oak Ridge, Tennessee


Book Description

This report contains the groundwater and surface water monitoring data that were obtained at the US Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee, during calendar year (CY) 2000. These monitoring data were collected for the specific purposes of DOE Order 5400.1 site surveillance monitoring and exit pathway/perimeter monitoring, as described in the ''Environmental Monitoring Plan for the Oak Ridge Reservation'' (DOE 1996). Site surveillance monitoring provides data regarding the quality of groundwater and surface water in areas that are, or could be, affected by operations at Y-12. Exit pathway/perimeter monitoring provides data regarding the quality of groundwater and surface water where contaminants from Y-12 are most likely to migrate beyond the boundaries of the DOE Oak Ridge Reservation (ORR). The CY 2000 groundwater and surface water monitoring data presented in this report were obtained under the auspices of the Y-12 Groundwater Protection Program (GWPP), managed by Lockheed Martin Energy Systems, Inc. (LMES) (January-October, 2000) and by BWXT Y-12, L.L.C. (November-December, 2000), and the Water Resources Restoration Program (WRRP), which is managed by Bechtel Jacobs Company LLC. Combining the monitoring results obtained under both the Y-12 GWPP and the WRRP enables this report to serve as a consolidated reference for the groundwater and surface water monitoring data obtained at Y-12 during CY 2000.




Grazed Pastures and Surface Water Quality


Book Description

This book covers the subject of grasslands used for grazing livestock. Grasslands can be split into improved and unimproved pastures (also a sub-set of rangelands). Land used for livestock industries occupy 70% agricultural land and about 40% of total land and produce 40% of agricultural gross domestic product (FAO, 2005; Steinfeld et al., 2006). Increasing populations and incomes, coupled with a change in diets and urbanisation in the developing world, is enhancing demand for pasture-based products (Devine, 2003; Schmidhuber and Shetty, 2005). For example, milk and meat production is predicted to double to just over 1 billion tonnes of milk and 465 million tonnes of meat by 2050 (Steinfeld et al., 2006). To meet these demands most effort will go into intensification of improved pastures, which translates into high stocking densities supported by large inputs of fertilisers, feed supplements and energy.







Assessing the TMDL Approach to Water Quality Management


Book Description

Over the last 30 years, water quality management in the United States has been driven by the control of point sources of pollution and the use of effluent-based water quality standards. Under this paradigm, the quality of the nation's lakes, rivers, reservoirs, groundwater, and coastal waters has generally improved as wastewater treatment plants and industrial dischargers (point sources) have responded to regulations promulgated under authority of the 1972 Clean Water Act. These regulations have required dischargers to comply with effluent-based standards for criteria pollutants, as specified in National Pollutant Discharge Elimination System (NPDES) permits issued by the states and approved by the U.S. Environmental Protection Agency (EPA). Although successful, the NPDES program has not achieved the nation's water quality goals of "fishable and swimmable" waters largely because discharges from other unregulated nonpoint sources of pollution have not been as successfully controlled. Today, pollutants such as nutrients and sediment, which are often associated with nonpoint sources and were not considered criteria pollutants in the Clean Water Act, are jeopardizing water quality, as are habitat destruction, changes in flow regimes, and introduction of exotic species. This array of challenges has shifted the focus of water quality management from effluent-based to ambient- based water quality standards. Given the most recent lists of impaired waters submitted to EPA, there are about 21,000 polluted river segments, lakes, and estuaries making up over 300,000 river and shore miles and 5 million lake acres. The number of TMDLs required for these impaired waters is greater than 40,000. Under the 1992 EPA guidance or the terms of lawsuit settlements, most states are required to meet an 8- to 13-year deadline for completion of TMDLs. Budget requirements for the program are staggering as well, with most states claiming that they do not have the personnel and financial resources necessary to assess the condition of their waters, to list waters on 303d, and to develop TMDLs. A March 2000 report of the General Accounting Office (GAO) highlighted the pervasive lack of data at the state level available to set water quality standards, to determine what waters are impaired, and to develop TMDLs. This report represents the consensus opinion of the eight-member NRC committee assembled to complete this task. The committee met three times during a three-month period and heard the testimony of over 40 interested organizations and stakeholder groups. The NRC committee feels that the data and science have progressed sufficiently over the past 35 years to support the nation's return to ambient-based water quality management. Given reasonable expectations for data availability and the inevitable limits on our conceptual understanding of complex systems, statements about the science behind water quality management must be made with acknowledgment of uncertainties. This report explains that there are creative ways to accommodate this uncertainty while moving forward in addressing the nation's water quality challenges.