Surveys in Combinatorics 2024


Book Description

This volume contains surveys of current research directions in combinatorics written by leading researchers in their fields.




Surveys in Combinatorics, 1991


Book Description

This volume contains the invited papers presented at the British Combinatorial Conference, held at the University of Surrey in July 1991.




Surveys in Combinatorics, 1989


Book Description

Many areas of current research activity in combinatorics and its applications, including graph theory, designs and probabilistic graphs, are surveyed in lectures presented at the 12th British Combinatorial Conference.




Surveys in Modern Mathematics


Book Description

Topics covered range from computational complexity, algebraic geometry, dynamics, through to number theory and quantum groups.




Groups and Graphs, Designs and Dynamics


Book Description

This collection of four short courses looks at group representations, graph spectra, statistical optimality, and symbolic dynamics, highlighting their common roots in linear algebra. It leads students from the very beginnings in linear algebra to high-level applications: representations of finite groups, leading to probability models and harmonic analysis; eigenvalues of growing graphs from quantum probability techniques; statistical optimality of designs from Laplacian eigenvalues of graphs; and symbolic dynamics, applying matrix stability and K-theory. An invaluable resource for researchers and beginning Ph.D. students, this book includes copious exercises, notes, and references.




A Survey of Combinatorial Theory


Book Description

A Survey of Combinatorial Theory covers the papers presented at the International Symposium on Combinatorial Mathematics and its Applications, held at Colorado State University (CSU), Fort Collins, Colorado on September 9-11, 1971. The book focuses on the principles, operations, and approaches involved in combinatorial theory, including the Bose-Nelson sorting problem, Golay code, and Galois geometries. The selection first ponders on classical and modern topics in finite geometrical structures; balanced hypergraphs and applications to graph theory; and strongly regular graph derived from the perfect ternary Golay code. Discussions focus on perfect ternary Golay code, finite projective and affine planes, Galois geometries, and other geometric structures. The book then examines the characterization problems of combinatorial graph theory, line-minimal graphs with cyclic group, circle geometry in higher dimensions, and Cayley diagrams and regular complex polygons. The text discusses combinatorial problems in finite Abelian groups, dissection graphs of planar point sets, combinatorial problems and results in fractional replication, Bose-Nelson sorting problem, and some combinatorial aspects of coding theory. The text also reviews the enumerative theory of planar maps, balanced arrays and orthogonal arrays, existence of resolvable block designs, and combinatorial problems in communication networks. The selection is a valuable source of information for mathematicians and researchers interested in the combinatorial theory.




Open Problems in Algebraic Combinatorics


Book Description

In their preface, the editors describe algebraic combinatorics as the area of combinatorics concerned with exact, as opposed to approximate, results and which puts emphasis on interaction with other areas of mathematics, such as algebra, topology, geometry, and physics. It is a vibrant area, which saw several major developments in recent years. The goal of the 2022 conference Open Problems in Algebraic Combinatorics 2022 was to provide a forum for exchanging promising new directions and ideas. The current volume includes contributions coming from the talks at the conference, as well as a few other contributions written specifically for this volume. The articles cover the majority of topics in algebraic combinatorics with the aim of presenting recent important research results and also important open problems and conjectures encountered in this research. The editors hope that this book will facilitate the exchange of ideas in algebraic combinatorics.




Topics in Graph Automorphisms and Reconstruction


Book Description

An in-depth coverage of selected areas of graph theory focusing on symmetry properties of graphs, ideal for beginners and specialists.




Combinatorics of Genome Rearrangements


Book Description

A comprehensive survey of a rapidly expanding field of combinatorial optimization, mathematically oriented but offering biological explanations when required. From one cell to another, from one individual to another, and from one species to another, the content of DNA molecules is often similar. The organization of these molecules, however, differs dramatically, and the mutations that affect this organization are known as genome rearrangements. Combinatorial methods are used to reconstruct putative rearrangement scenarios in order to explain the evolutionary history of a set of species, often formalizing the evolutionary events that can explain the multiple combinations of observed genomes as combinatorial optimization problems. This book offers the first comprehensive survey of this rapidly expanding application of combinatorial optimization. It can be used as a reference for experienced researchers or as an introductory text for a broader audience. Genome rearrangement problems have proved so interesting from a combinatorial point of view that the field now belongs as much to mathematics as to biology. This book takes a mathematically oriented approach, but provides biological background when necessary. It presents a series of models, beginning with the simplest (which is progressively extended by dropping restrictions), each constructing a genome rearrangement problem. The book also discusses an important generalization of the basic problem known as the median problem, surveys attempts to reconstruct the relationships between genomes with phylogenetic trees, and offers a collection of summaries and appendixes with useful additional information.




MATHEMATICAL COMBINATORICS (INTERNATIONAL BOOK SERIES)


Book Description

The mathematical combinatorics is a subject that applying combinatorial notion to all mathematics and all sciences for understanding the reality of things in the universe, motivated by CC Conjecture of Dr.Linfan MAO on mathematical sciences. TheMathematical Combinatorics (International Book Series) is a fully refereed international book series with an ISBN number on each issue, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandachemulti-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.