Sustainable Developments by Artificial Intelligence and Machine Learning for Renewable Energies


Book Description

Sustainable Developments by Artificial Intelligence and Machine Learning for Renewable Energies analyzes the changes in this energy generation shift, including issues of grid stability with variability in renewable energy vs. traditional baseload energy generation. Providing solutions to current critical environmental, economic and social issues, this book comprises various complex nonlinear interactions among different parameters to drive the integration of renewable energy into the grid. It considers how artificial intelligence and machine learning techniques are being developed to produce more reliable energy generation to optimize system performance and provide sustainable development. As the use of artificial intelligence to revolutionize the energy market and harness the potential of renewable energy is essential, this reference provides practical guidance on the application of renewable energy with AI, along with machine learning techniques and capabilities in design, modeling and for forecasting performance predictions for the optimization of renewable energy systems. It is targeted at researchers, academicians and industry professionals working in the field of renewable energy, AI, machine learning, grid Stability and energy generation. - Covers the best-performing methods and approaches for designing renewable energy systems with AI integration in a real-time environment - Gives advanced techniques for monitoring current technologies and how to efficiently utilize the energy grid spectrum - Addresses the advanced field of renewable generation, from research, impact and idea development of new applications




Artificial Intelligence for Smart and Sustainable Energy Systems and Applications


Book Description

Energy has been a crucial element for human beings and sustainable development. The issues of global warming and non-green energy have yet to be resolved. This book is a collection of twelve articles that provide strong evidence for the success of artificial intelligence deployment in energy research, particularly research devoted to non-intrusive load monitoring, network, and grid, as well as other emerging topics. The presented artificial intelligence algorithms may provide insight into how to apply similar approaches, subject to fine-tuning and customization, to other unexplored energy research. The ultimate goal is to fully apply artificial intelligence to the energy sector. This book may serve as a guide for professionals, researchers, and data scientists—namely, how to share opinions and exchange ideas so as to facilitate a better fusion of energy, academic, and industry research, and improve in the quality of people's daily life activities.




Renewable Energy for Smart and Sustainable Cities


Book Description

This book features cutting-edge research presented at the second international conference on Artificial Intelligence in Renewable Energetic Systems, IC-AIRES2018, held on 24–26 November 2018, at the High School of Commerce, ESC-Koléa in Tipaza, Algeria. Today, the fundamental challenge of integrating renewable energies into the design of smart cities is more relevant than ever. While based on the advent of big data and the use of information and communication technologies, smart cities must now respond to cross-cutting issues involving urban development, energy and environmental constraints; further, these cities must also explore how they can integrate more sustainable energies. Sustainable energies are a major determinant of smart cities’ longevity. From an environmental and technological standpoint, these energies offer an optimal power supply to the electric network while creating significantly less pollution. This requires flexibility, i.e., the availability of supply and demand. The end goal of any smart city is to improve the quality of life for all citizens (both in the city and in the countryside) in a way that is sustainable and respectful of the environment. This book encourages the reader to engage in the preservation of our environment, every moment, every day, so as to help build a clean and healthy future, and to think of the future generations who will one day inherit our planet. Further, it equips those whose work involves energy systems and those engaged in modelling artificial intelligence to combine their expertise for the benefit of the scientific community and humanity as a whole.




Applications of AI and IOT in Renewable Energy


Book Description

Applications of AI and IOT in Renewable Energy provides a future vision of unexplored areas and applications for Artificial Intelligence and Internet of Things in sustainable energy systems. The ideas presented in this book are backed up by original, unpublished technical research results covering topics like smart solar energy systems, intelligent dc motors and energy efficiency study of electric vehicles. In all these areas and more, applications of artificial intelligence methods, including artificial neural networks, genetic algorithms, fuzzy logic and a combination of the above in hybrid systems are included. This book is designed to assist with developing low cost, smart and efficient solutions for renewable energy systems and is intended for researchers, academics and industrial communities engaged in the study and performance prediction of renewable energy systems. - Includes future applications of AI and IOT in renewable energy - Based on case studies to give each chapter real-life context - Provides advances in renewable energy using AI and IOT with technical detail and data




Artificial Intelligence and Machine Learning for Sustainable Development


Book Description

Artificial Intelligence and Machine Learning for Sustainable Development is a comprehensive exploration of how artificial intelligence (AI) and machine learning (ML) technologies are revolutionizing the field of sustainable development. The book examines cutting-edge innovations, practical applications, and potential challenges in harnessing AI and ML to address global sustainability issues. It offers insights into how these technologies can optimize resource management, improve environmental monitoring, enhance decision-making processes, and promote equitable, eco-friendly solutions. This book would be of special interest to researchers, policymakers, and practitioners seeking to leverage cutting-edge technology for a more sustainable future.




Machine Learning for Sustainable Development


Book Description

The book will focus on the applications of machine learning for sustainable development. Machine learning (ML) is an emerging technique whose diffusion and adoption in various sectors (such as energy, agriculture, internet of things, infrastructure) will be of enormous benefit. The state of the art of machine learning models is most useful for forecasting and prediction of various sectors for sustainable development.




Renewable Energy and AI for Sustainable Development


Book Description

Electronic device usage has increased considerably in the past two decades. System configurations are continuously requiring upgrades; existing systems often become obsolete in a matter of 2–3 years. Green computing is the complete effective management of design, manufacture, use, and disposal, involving as little environmental impact as possible. This book intends to explore new and innovative ways of conserving energy, effective e-waste management, and renewable energy sources to harness and nurture a sustainable eco-friendly environment. This book: • Highlights innovative principles and practices using effective e-waste management and disposal • Explores artificial intelligence based sustainable models • Discovers alternative sources and mechanisms for minimizing environmental hazards • Highlights successful case studies in alternative sources of energy • Presents solid illustrations, mathematical equations, as well as practical in-the-field applications • Serves as a one-stop reference guide to stakeholders in the domain of green computing, e-waste management, renewable energy alternatives, green transformational leadership including theory concepts, practice and case studies • Explores cutting-edge technologies like internet of energy and artificial intelligence, especially the role of machine learning and deep learning in renewable energy and creating a sustainable ecosystem • Explores futuristic trends in renewable energy This book aims to address the increasing interest in reducing the environmental impact of energy as well as its further development and will act as a useful reference for engineers, architects, and technicians interested in and working with energy systems; scientists and engineers in developing countries; industries, manufacturers, inventors, universities, researchers, and interested consultants to explain the foundation to advanced concepts and research trends in the domain of renewable energy and sustainable computing. The content coverage of the book is organized in the form of 11 clear and thorough chapters providing a comprehensive view of the global renewable energy scenario, as well as how science and technology can play a vital role in renewable energy.




Artificial Intelligence and Renewables Towards an Energy Transition


Book Description

This proceedings book emphasizes adopting artificial intelligence-based and sustainable energy efficiency integrated with clear objectives, to involve researchers, students, and specialists in their development and implementation adequately in achieving objectives. The integration of artificial intelligence into renewable energetic systems would allow the rapid development of a knowledge-based economy suitable to the energy transition, while fully integrating the renewables into the global economy. This is how artificial intelligence has hand in by conceptualizing this transition and above all by saving time. The knowledge economy is valuated within the smart cities, which are fast becoming the favorite places where the energy transition will take place efficiently and intelligently by implementing integrated approaches to energy saving and energy supply and integrated urban approaches that go beyond individual interventions in buildings or transport modes using information and communication technologies.




Artificial Intelligence Applications for Sustainable Construction


Book Description

Artificial Intelligence Applications for Sustainable Construction presents the latest developments in AI and ML technologies applied to real-world civil engineering concerns. With an increasing amount of attention on the environmental impact of every industry, more construction projects are going to require sustainable construction practices. This volume offers research evidence, simulation results, and case studies to support this change. Sustainable construction, in fact, not only uses renewable and recyclable materials when building new structures or repairing deteriorating ones, but also adopts all possible methods to reduce energy consumption and waste. The concisely written but comprehensive, practical knowledge put forward by this international group of highly specialized editors and contributors will prove to be beneficial to engineering students and professionals alike. - Presents convincing "success stories that encourage application of AI-powered tools to civil engineering - Provides a wealth of valuable technical information to address and resolve many challenging construction problems - Illustrates the most recent shifts in thinking and practice for sustainable construction




Methodologies, Frameworks, and Applications of Machine Learning


Book Description

Technology is constantly evolving, and machine learning is positioned to become a pivotal tool with the power to transform industries and revolutionize everyday life. This book underscores the urgency of leveraging the latest machine learning methodologies and theoretical advancements, all while harnessing a wealth of realistic data and affordable computational resources. Machine learning is no longer confined to theoretical domains; it is now a vital component in healthcare, manufacturing, education, finance, law enforcement, and marketing, ushering in an era of data-driven decision-making. Academic scholars seeking to unlock the potential of machine learning in the context of Industry 5.0 and advanced IoT applications will find that the groundbreaking book, Methodologies, Frameworks, and Applications of Machine Learning, introduces an unmissable opportunity to delve into the forefront of modern research and application. This book offers a wealth of knowledge and practical insights across a wide array of topics, ranging from conceptual frameworks and methodological approaches to the application of probability theory, statistical techniques, and machine learning in domains as diverse as e-government, healthcare, cyber-physical systems, and sustainable development, this comprehensive guide equips you with the tools to navigate the complexities of Industry 5.0 and the Internet of Things (IoT).