Sustainable Design


Book Description

Scientific Principles to Guide Sustainable Design Decisions From thermodynamics to fluid dynamics to computational chemistry, this book sets forth the scientific principles underlying the need for sustainable design, explaining not just the "hows" of sustainable design and green engineering, but also the "whys." Moreover, it provides readers with the scientific principles needed to guide their own sustainable design decisions. Throughout the book, the authors draw from their experience in architecture, civil engineering, environmental engineering, planning, and public policy in order to build an understanding of the interdisciplinary nature of sustainable design. Written to enable readers to take a more scientific approach to sustainable design, the book offers many practical features, including: Case studies presenting the authors' firsthand accounts of actual green projects Lessons learned from Duke University's Smart House Program that demonstrate the concepts and techniques discussed in the book Exercises that encourage readers to use their newfound knowledge to solve green design problems Figures, tables, and sidebars illustrating key concepts and summarizing important points For architects, designers, and engineers, this book enables them to not only implement green design methods, but also to choose these methods based on science. With its many examples, case studies, and exercises, the book is also an ideal textbook for students in civil and environmental engineering, construction, and architectural engineering.







Green Engineering and Technology


Book Description

Escalating urbanization and energy consumption have increased the demand for green engineering solutions and intelligent systems to mitigate environmental hazards and offer a more sustainable future. Green engineering technologies help to create sustainable, eco-friendly designs and solutions with the aid of updated tools, methods, designs, and innovations. These technologies play a significant role in optimizing sustainability in various areas of energy, agriculture, waste management, and bioremediation and include green computing and artificial intelligence (AI) applications. Green Engineering and Technology: Innovations, Design, and Architectural Implementation examines the most recent advancements in green technology, across multiple industries, and outlines the opportunities of emerging and future innovations, as well as practical real-world implementation. Features: Provides different models capable of fulfilling the criteria of energy efficiency, health and safety, renewable resources, and more Examines recycling, waste management, and bioremediation techniques as well as waste-to-energy technologies Presents business cases for adopting green technologies including electronics, manufacturing, and infrastructure projects Reviews green technologies for applications such as energy production, building construction, transportation, and industrialization Green Engineering and Technology: Innovations, Design, and Architectural Implementation serves as a useful and practical guide for practicing engineers, researchers, and students alike.




Sustainable Cities and Communities Design Handbook


Book Description

Sustainable Communities Design Handbook: Green Engineering, Architecture, and Technology, Second Edition, brings together the major players responsible for sustainable development at both community and metropolitan scales. The book aims to explain and demonstrate the practice, planning, design, building and managing of the engineering, architectural and economic development of cities and communities to meet sustainable development objectives. Offering a holistic approach to creating sustainable communities, the book includes a 40 percent increase in new methods and technology over the last edition, and 50 percent more case studies from around the world to illustrate how common sustainability problems are solved. As the concept and practices of a sustainable built environment have evolved over the years, it is increasingly recognized that the scope should be expanded beyond individual buildings to the community scale. Written by an international team of engineers, architects, and environmental experts this second edition includes new HVAC technologies for heating and cooling, energy effect technologies for lighting, and new construction materials which improve heating and cooling efficiencies. This new edition will also include critical updates on international codes: LEED, BREEAM, and Green Globes. Explains the most cutting-edge green technologies and methods for use in built communities Provides a common approach in using natural resources when building and designing green communities Features coverage of green practices from architecture to construction Covers compliance with various international codes, methods and legal frameworks




Sustainable Engineering for Life Tomorrow


Book Description

Sustainable Engineering for Life Tomorrow examines the future of sustainable engineering and architecture. The contributors' analyses of sustainable solutions, such as wind and solar power, offer valuable insights for future policy-making, scholarship, and the management of energy-intensive facilities.




Whole System Design


Book Description

Whole System Design is increasingly being seen as one of the most cost-effective ways to both increase the productivity and reduce the negative environmental impacts of an engineered system. A focus on design is critical, as the output from this stage of the project locks in most of the economic and environmental performance of the designed system throughout its life, which can span from a few years to many decades. Indeed, it is now widely acknowledged that all designers - particularly engineers, architects and industrial designers - need to be able to understand and implement a whole system design approach. This book provides a clear design methodology, based on leading efforts in the field, and is supported by worked examples that demonstrate how advances in energy, materials and water productivity can be achieved through applying an integrated approach to sustainable engineering. Chapters 1-5 outline the approach and explain how it can be implemented to enhance the established Systems Engineering framework. Chapters 6-10 demonstrate, through detailed worked examples, the application of the approach to industrial pumping systems, passenger vehicles, electronics and computer systems, temperature control of buildings, and domestic water systems. Published with The Natural Edge Project, the World Federation of Engineering Organizations, UNESCO and the Australian Government.




Sustainable Communities Design Handbook


Book Description

The objective of Sustainable Communities Design Handbook is to ensure a better quality of life for everyone, both now and for generations to come. This means creating a better and safer environment internationally through the sustainable use of natural resources, encouraging sustainable development which supports a strong economy, and ensuring a high quality environment that can be enjoyed by all. Sustainable Development Partnerships brings together in one reference today's most cutting edge technologies and methods for creating sustainable communities. With this book, Environmental Engineers, Civil Engineers, Architects, Mechanical Engineers, and Energy Engineers find a common approach to building environmental friendly communities which are energy efficient. The five part treatment starts with a clear and rigorous exposition of sustainable development in practice, followed by self-contained chapters concerning applications. Methods for the sustainable use of natural resources in built communities Clearly explains the most cutting edge sustainable technologies Provides a common approach to building sustainable communities Coverage of sustainable practices from architecture to construction




New Technologies in Building and Construction


Book Description

This book presents contributions on new technologies in building and construction. Buildings are complex elements that impact environment significantly. The sustainability of this sector requires a holistic and multidisciplinary approach that allows adequate strategies to be established to reduce its environmental impact. This heterogeneity is represented in these chapters, which have been developed by researchers from different countries. The book is divided into three sections: (i) analysis, (ii) design and modeling, and (iii) solutions. The book chapters together represent an advance in current knowledge about new technologies in building and construction, crucial for researchers, engineers, architects, policy makers, and stakeholders.




A Handbook of Sustainable Building Design and Engineering


Book Description

The combined challenges of health, comfort, climate change and energy security cross the boundaries of traditional building disciplines. This authoritative collection, focusing mostly on energy and ventilation, provides the current and next generation of building engineering professionals with what they need to work closely with many disciplines to meet these challenges. A Handbook of Sustainable Building Engineering covers: how to design, engineer and monitor a building in a manner that minimises the emissions of greenhouse gases; how to adapt the environment, fabric and services of existing and new buildings to climate change; how to improve the environment in and around buildings to provide better health, comfort, security and productivity; and provides crucial expertise on monitoring the performance of buildings once they are occupied. The authors explain the principles behind built environment engineering, and offer practical guidance through international case studies.




Introduction to Sustainability for Engineers


Book Description

Introduction to Sustainability for Engineers aims to incorporate sustainability into curricula for undergraduate engineering students. The book starts with an introduction to the concept of sustainability, outlining core principles for sustainable development to guide engineering practice and decision making, including key tools aimed at enabling, measuring and communicating sustainability. It also describes concepts as life cycle assessment, environmental economics, related institutional architecture and policy framework, business context of sustainability, and sustainable buildings and infrastructure. Appendices at the end of the book presents a summary of key concepts, strategies and tools introduced in the main text. Five Key Benefits: A comprehensive textbook for engineering students to develop competency in sustainability. Presents a framework for engineers to put sustainability into practice. Presents the link between sustainability and the design process. It shows the application of a sustainable engineering design process for putting sustainability into practice. There are well woven case studies and links to websites for learning in various engineering disciplines. Includes challenging exercises at the end of each chapter that will inspire students and stimulate discussion in the class.