SVD and Signal Processing, III


Book Description

Matrix Singular Value Decomposition (SVD) and its application to problems in signal processing is explored in this book. The papers discuss algorithms and implementation architectures for computing the SVD, as well as a variety of applications such as systems and signal modeling and detection.The publication presents a number of keynote papers, highlighting recent developments in the field, namely large scale SVD applications, isospectral matrix flows, Riemannian SVD and consistent signal reconstruction. It also features a translation of a historical paper by Eugenio Beltrami, containing one of the earliest published discussions of the SVD.With contributions sourced from internationally recognised scientists, the book will be of specific interest to all researchers and students involved in the SVD and signal processing field.




Sensor Signal and Information Processing III


Book Description

In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem-solving. These algorithms have the capacity to generalize and discover knowledge for themselves and to learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves the mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topics range from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspired filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensor signal processing.




SVD and Signal Processing, II


Book Description

This volume is an outgrowth of the 2nd International Workshop on SVD and Signal Processing which was held in Kingston, Rhode Island, 25-27 June, 1990. The singular value decomposition (SVD) has been applied to signal processing problems since the late 1970's, although it has been known in various forms for over 100 years. SVD filtering has been shown to give better results at lower signal-to-noise ratios than classical techniques based on linear filtering. This explains in part the recent interest in SVD techniques for signal processing. This book is a compilation of papers that examine in detail the singular decomposition of a matrix and its application to problems in signal processing. Algorithms and implementation architectures for computing the SVD are discussed, and analysis techniques for predicting and understanding the performance of SVD-based algorithms are given. The volume will provide both a stimulus for future research in this field as well as useful reference material for many years to come.




Signal Processing for Remote Sensing


Book Description

Written by leaders in the field, Signal Processing for Remote Sensing explores the data acquisitions segment of remote sensing. Each chapter presents a major research result or the most up to date development of a topic. The book includes a chapter by Dr. Norden Huang, inventor of the Huang-Hilbert transform who, along with and Dr. Steven Lo




Signal and Image Processing for Remote Sensing


Book Description

Most data from satellites are in image form, thus most books in the remote sensing field deal exclusively with image processing. However, signal processing can contribute significantly in extracting information from the remotely sensed waveforms or time series data. Pioneering the combination of the two processes, Signal and Image Processing for Remote Sensing provides a balance between the role of signal processing and image processing in remote sensing. Featuring contributions from worldwide experts, this book emphasizes mathematical approaches. Divided into two parts, Part I examines signal processing for remote sensing and Part II explores image processing. Not limited to the problems with data from satellite sensors, the book considers other sensors which acquire data remotely, including signals and images from infrasound, seismic, microwave, and satellite sensors. It covers a broader scope of issues in remote sensing information processing than other books in this area. With rapid technological advances, the mathematical techniques provided will far outlast the sensor, software and hardware technologies. Focusing on methodologies of signal processing and image processing in remote sensing, this book discusses unique techniques for dealing with remote sensing problems.




Digital Signal Processing Handbook on CD-ROM


Book Description

A best-seller in its print version, this comprehensive CD-ROM reference contains unique, fully searchable coverage of all major topics in digital signal processing (DSP), establishing an invaluable, time-saving resource for the engineering community. Its unique and broad scope includes contributions from all DSP specialties, including: telecommunications, computer engineering, acoustics, seismic data analysis, DSP software and hardware, image and video processing, remote sensing, multimedia applications, medical technology, radar and sonar applications




Wireless Algorithms, Systems, and Applications


Book Description

This book constitutes the refereed proceedings of the 5th Annual International Conference on Wireless Algorithms, Systems, and Applications, WASA 2010, held in Beijing, China, in August 2010. The 19 revised full papers and 10 revised short papers presented together with 18 papers from 4 workshops were carefully reviewed and selected from numerous submissions. The papers are organized in topica sections on topology control and coverage, theoretical foundations, energy-aware algorithms and protocol design, wireless sensor networks and applications, applications and experimentation, scheduling and channel assignment, coding, information theory and security, security of wireless and ad-hoc networks, data management and network control in wireless networks, radar and sonar sensor networks, as well as compressive sensing for communications and networking.




SVD and Signal Processing


Book Description

Compiled in this book is a selection of articles written by internationally recognized experts in the fields of matrix computation and signal processing. In almost all digital signal processing (DSR) problems, the available data is corrupted by (measurement) noise or is incomplete. Classical techniques are unable to separate ''signal'' spaces and ''noise'' spaces. However, the information hidden in the data can be made explicit through singular value decomposition (SVD). SVD based signal processing is making headway and will become feasible soon, thanks to the progress in parallel computations and VLSI implementation. The book is divided into six parts. Part one is a tutorial, beginning with an introduction, including (VLSI) parallel algorithms and some intriguing problems. It describes several applications of SVD in system identification and signal detection. It also deals with the fundamental harmonic retrieval problem and principal component analysis. Part two discusses details of model reduction, system identification and detection of multiple sinusoids in white noise, while part three is devoted to the total-least-squares and generalized singular value decomposition problems. The fourth section deals with real-time and adaptive algorithms, the fifth examines fast algorithms and architectures, such as block-algorithms, computational arrays, systolic arrays, hypercubes and connection machines, and the final part addresses some open problems.




Wireless, Networking, Radar, Sensor Array Processing, and Nonlinear Signal Processing


Book Description

Now available in a three-volume set, this updated and expanded edition of the bestselling The Digital Signal Processing Handbook continues to provide the engineering community with authoritative coverage of the fundamental and specialized aspects of information-bearing signals in digital form. Encompassing essential background material, technical details, standards, and software, the second edition reflects cutting-edge information on signal processing algorithms and protocols related to speech, audio, multimedia, and video processing technology associated with standards ranging from WiMax to MP3 audio, low-power/high-performance DSPs, color image processing, and chips on video. Drawing on the experience of leading engineers, researchers, and scholars, the three-volume set contains 29 new chapters that address multimedia and Internet technologies, tomography, radar systems, architecture, standards, and future applications in speech, acoustics, video, radar, and telecommunications. This volume, Wireless, Networking, Radar, Sensor Array Processing, and Nonlinear Signal Processing, provides complete coverage of the foundations of signal processing related to wireless, radar, space–time coding, and mobile communications, together with associated applications to networking, storage, and communications.




Singular Spectrum Analysis for Time Series


Book Description

This book gives an overview of singular spectrum analysis (SSA). SSA is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA is multi-purpose and naturally combines both model-free and parametric techniques, which makes it a very special and attractive methodology for solving a wide range of problems arising in diverse areas. Rapidly increasing number of novel applications of SSA is a consequence of the new fundamental research on SSA and the recent progress in computing and software engineering which made it possible to use SSA for very complicated tasks that were unthinkable twenty years ago. In this book, the methodology of SSA is concisely but at the same time comprehensively explained by two prominent statisticians with huge experience in SSA. The book offers a valuable resource for a very wide readership, including professional statisticians, specialists in signal and image processing, as well as specialists in numerous applied disciplines interested in using statistical methods for time series analysis, forecasting, signal and image processing. The second edition of the book contains many updates and some new material including a thorough discussion on the place of SSA among other methods and new sections on multivariate and multidimensional extensions of SSA.