Fundamentals of Chromatin


Book Description

​​​​​​​​​​​​​While there has been an increasing number of books on various aspects of epigenetics, there has been a gap over the years in books that provide a comprehensive understanding of the fundamentals of chromatin. ​Chromatin is the combination of DNA and proteins that make up the genetic material of chromosomes. Its primary function is to package DNA to fit into the cell, to strengthen the DNA to prevent damage, to allow mitosis and meiosis, and to control the expression of genes and DNA replication. The audience for this book is mainly newly established scientists ​and graduate students. Rather than going into the more specific areas of recent research on chromatin the chapters in this book give a strong, updated groundwork about the topic. Some the fundamentals that this book will cover include the structure of chromatin and biochemistry and the enzyme complexes that manage it.




Chromatin


Book Description

The Third Edition of Chromatin: Structure and Function brings the reader up-to-date with the remarkable progress in chromatin research over the past three years. It has been extensively rewritten to cover new material on chromatin remodeling, histone modification, nuclear compartmentalization, DNA methylation, and transcriptional co-activators and co-repressors. The book is written in a clear and concise fashion, with 60 new illustrations. Chromatin: Structure and Function provides the reader with a concise and coherent account of the nature, structure, and assembly of chromatin and its active involvement in the processes of DNA transcription, replication and repair. This book consistently interrelates the structure of eukaryotic DNA with the nuclear processes it undergoes, and will be essential reading for students and molecular biologists who want to really understand how DNA works. - Written in a clear and concise fashion - Includes 60 new illustrations - Extensively rewritten - Brings the reader up-to-date with the remarkable progress in chromatin research over the past three years.




Brenner's Encyclopedia of Genetics


Book Description

The explosion of the field of genetics over the last decade, with the new technologies that have stimulated research, suggests that a new sort of reference work is needed to keep pace with such a fast-moving and interdisciplinary field. Brenner's Encyclopedia of Genetics, Second Edition, Seven Volume Set, builds on the foundation of the first edition by addressing many of the key subfields of genetics that were just in their infancy when the first edition was published. The currency and accessibility of this foundational content will be unrivalled, making this work useful for scientists and non-scientists alike. Featuring relatively short entries on genetics topics written by experts in that topic, Brenner's Encyclopedia of Genetics, Second Edition, Seven Volume Set provides an effective way to quickly learn about any aspect of genetics, from Abortive Transduction to Zygotes. Adding to its utility, the work provides short entries that briefly define key terms, and a guide to additional reading and relevant websites for further study. Many of the entries include figures to explain difficult concepts. Key terms in related areas such as biochemistry, cell, and molecular biology are also included, and there are entries that describe historical figures in genetics, providing insights into their careers and discoveries. This 7-volume set represents a 25% expansion from the first edition, with over 1600 articles encompassing this burgeoning field Thoroughly up-to-date, with many new topics and subfields covered that were in their infancy or not inexistence at the time of the first edition. Timely coverage of emergent areas such as epigenetics, personalized genomic medicine, pharmacogenetics, and genetic enhancement technologies Interdisciplinary and global in its outlook, as befits the field of genetics Brief articles, written by experts in the field, which not only discuss, define, and explain key elements of the field, but also provide definition of key terms, suggestions for further reading, and biographical sketches of the key people in the history of genetics




Introduction to Epigenetics


Book Description

This open access textbook leads the reader from basic concepts of chromatin structure and function and RNA mechanisms to the understanding of epigenetics, imprinting, regeneration and reprogramming. The textbook treats epigenetic phenomena in animals, as well as plants. Written by four internationally known experts and senior lecturers in this field, it provides a valuable tool for Master- and PhD- students who need to comprehend the principles of epigenetics, or wish to gain a deeper knowledge in this field. After reading this book, the student will: Have an understanding of the basic toolbox of epigenetic regulation Know how genetic and epigenetic information layers are interconnected Be able to explain complex epigenetic phenomena by understanding the structures and principles of the underlying molecular mechanisms Understand how misregulated epigenetic mechanisms can lead to disease




Epigenomics, from Chromatin Biology to Therapeutics


Book Description

Experts from academia, the biotechnology and pharmaceutical industries introduce biological, medical and methodological aspects of the emerging field of epigenomics.




Nucleosomes, Histones & Chromatin


Book Description

Covers nucleosomes, histones and chromatin, with chapters on dynamic mapping of histone-DNA interactions in nucleosomes by unzipping single molecules of DNA, Digital DNase technology, and Genome-wide Analysis of Chromatin Transition.




The Nucleosome


Book Description

This is the first in a series of volumes concerning the properties of the eukaryotic nucleus. Contributions from several of the most active laboratories are brought together to present a focused overview of a selected aspect of nuclear structure and function.




Nucleosomes, Histones and Chromatin Part B


Book Description

This new volume of Methods in Enzymology continues the legacy of this premier serial by containing quality chapters authored by leaders in the field. The volume covers nucleosomes, histones and chromatin and has chapters on dynamic mapping of histone-DNA interactions in nucleosomes by unzipping single molecules of DNA, digital DNase technology, and genome-wide analysis of chromatin transition. - Contains quality chapters authored by leaders in the field - The volume covers nucleosomes, histones and chromatin - Has chapters on dynamic mapping of histone-DNA interactions in nucleosomes by unzipping single molecules of DNA, digital DNase technology, and genome-wide analysis of chromatin transition




Genome Organization And Function In The Cell Nucleus


Book Description

By way of its clear and logical structure, as well as abundant highresolution illustrations, this is a systematic survey of the players and pathways that control genome function in the mammalian cell nucleus. As such, this handbook and reference ties together recently gained knowledge from a variety of scientific disciplines and approaches, dissecting all major genomic events: transcription, replication, repair, recombination and chromosome segregation. A special emphasis is put on transcriptional control, including genome-wide interactions and non-coding RNAs, chromatin structure, epigenetics and nuclear organization. With its focus on fundamental mechanisms and the associated biomolecules, this will remain essential reading for years to come.




Chromatin


Book Description

Chromatin: Structure, Function, and History covers the basics of chromatin biology, beginning with the discoveries that culminated in the recognition of the nucleosome as the basic subunit of chromatin. Chromatin folding, nucleosome positioning, and histone variants are discussed, as well as research on chromatin modifications and remodeling, which exploded in the early to mid-1990s and led to widespread interest in epigenetics. Considerable attention is given to methods and experiments that led to key insights and recent developments such as the use of genome-wide approaches and innovations in imaging approaches are also emphasized. By providing historical background together with detailed discussion of contemporary studies, the book aims to instill in the reader an appreciation not only of our current knowledge of chromatin structure and function, but also of the remarkable path that has taken chromatin to the forefront of modern research. - Provides a current, expansive, and well-documented resource on chromatin and epigenetics - Addresses the role of chromatin in transcription regulation and chromatin abnormalities in disease - Reviews the historical background of specific areas of chromatin research, enabling readers to understand how the field was born and to appreciate the discoveries and technical advances that have propelled it forward