Swimming and Flying in Nature


Book Description

The Symposium on Swimming and Flying in Nature which was held at the California Institute of Technology, Pasadena, California from July 8-12, 1974 was conceived with the objective of providing an interdisciplinary forum for the discussion of funda mental biological and fluid mechanical aspects of these forms of natura110comotion. It was the earnest hope of all concerned in the organization of the Symposium that the exchange of knowledge and interaction of ideas from the disciplines involved would stimu late new research in this developing field. If the liveliness of the discussion generated among the 250 or so participants is any measure, then this objective was fulfilled to a significant degree. These two companion volumes contain the manuscripts of the papers presented during the Symposium. It is hoped that this permanent record will serve to perpetuate the enthusiasm and active thought generated during those days in Pasadena. The first volume contains the proceedings of the first two days of the confer ence (Sessions I to IV) which concentrated on the locomotion of micro-organisms. The second volume (Sessions V to VIII) deals with the propulsion of larger fish, insects and birds. Professor Sir James Lighthill's Special Invited Lecture which opened the Symposium is contained in the second volume, rather than the first, since it deals with natural flight.







Mechanics of Swimming and Flying


Book Description

Provides a summary of the fluid dynamics of the locomotion of living organisms. Describes biological phenomena in detail from the swimming of bacteria and fish to the flying of insects and birds.




Bio-mechanisms of Swimming and Flying


Book Description

This book covers a wide range of animals from flagellated microorganisms to marine mammals. It follows "Bio-mechanisms of Animals in Swimming and Flying" published in 2004 including 11 chapters. This time, the book includes 31 chapters on the latest researches into natural autonomous systems and locomotion in both flying and swimming organisms. The area of sports science such as analysis and simulation of human swimming is newly added. The computational frameworks for the modeling, simulation and optimization of animals in swimming and flying demonstrate an important role in the progress of interdisciplinary work in the fields of biology and engineering.







The Humane Gardener


Book Description

In this eloquent plea for compassion and respect for all species, journalist and gardener Nancy Lawson describes why and how to welcome wildlife to our backyards. Through engaging anecdotes and inspired advice, profiles of home gardeners throughout the country, and interviews with scientists and horticulturalists, Lawson applies the broader lessons of ecology to our own outdoor spaces. Detailed chapters address planting for wildlife by choosing native species; providing habitats that shelter baby animals, as well as birds, bees, and butterflies; creating safe zones in the garden; cohabiting with creatures often regarded as pests; letting nature be your garden designer; and encouraging natural processes and evolution in the garden. The Humane Gardener fills a unique niche in describing simple principles for both attracting wildlife and peacefully resolving conflicts with all the creatures that share our world.




The Biokinetics of Flying and Swimming


Book Description

From a mechanical perspective, an animal's shape and the topological connection of its organs are important factors in locomotion. This book describes the physical relationships between form, habitat, way of life, and movement in living creatures. It includes in-depth mechanical and mathematical analyses of the way in which creatures move about, and it also investigates dispersal modes of plants and animals within the framework of flying and swimming. The book is written from the viewpoint of mechanics, specifically fluid dynamics and flight dynamics, rather than from that of physiology and ecology. It will prove a useful reference for aeronautical and mechanical engineers as well as for biologists who use mechanical analyses in the study of behaviour, function, and locomotion.




How to Walk on Water and Climb up Walls


Book Description

Discovering the secrets of animal movement and what they can teach us Insects walk on water, snakes slither, and fish swim. Animals move with astounding grace, speed, and versatility: how do they do it, and what can we learn from them? In How to Walk on Water and Climb up Walls, David Hu takes readers on an accessible, wondrous journey into the world of animal motion. From basement labs at MIT to the rain forests of Panama, Hu shows how animals have adapted and evolved to traverse their environments, taking advantage of physical laws with results that are startling and ingenious. In turn, the latest discoveries about animal mechanics are inspiring scientists to invent robots and devices that move with similar elegance and efficiency. Hu follows scientists as they investigate a multitude of animal movements, from the undulations of sandfish and the way that dogs shake off water in fractions of a second to the seemingly crash-resistant characteristics of insect flight. Not limiting his exploration to individual organisms, Hu describes the ways animals enact swarm intelligence, such as when army ants cooperate and link their bodies to create bridges that span ravines. He also looks at what scientists learn from nature’s unexpected feats—such as snakes that fly, mosquitoes that survive rainstorms, and dead fish that swim upstream. As researchers better understand such issues as energy, flexibility, and water repellency in animal movement, they are applying this knowledge to the development of cutting-edge technology. Integrating biology, engineering, physics, and robotics, How to Walk on Water and Climb up Walls demystifies the remarkable mechanics behind animal locomotion.




Swim


Book Description

Explores the nature and appeal of swimming, from the history of the strokes to aspects of modern Olympic competition, as well as the author's personal experiences and milestones in the sport.




Flow Phenomena in Nature: A challenge to engineering design


Book Description

Do we have an adequate understanding of fluid dynamics phenomena in nature and evolution, and what physical models do we need? What can we learn from nature to stimulate innovations in thinking as well as in engineering applications? Concentrating on flight and propulsion, this unique and accessible book compares fluid dynamics solutions in nature with those in engineering. The respected international contributors present up-to-date research in an easy to understand manner, giving common viewpoints from fields such as zoology, engineering, biology, fluid mechanics and physics. Contents: Introduction to Fluid Dynamics; Swimming and Flying in Nature; Generation of Forces in Fluids - Current Understanding; The Finite, Natural Vortex in Steady and Unsteady Fluid Dynamics - New Modelling; Applications in Engineering with Inspirations From Nature; Modern Experimental and Numerical Methods in Fluid Dynamics.