Switchable and Responsive Surfaces and Materials for Biomedical Applications


Book Description

Surface modification of biomaterials can ultimately determine whether a material is accepted or rejected from the human body, and a responsive surface can further make the material "smart" and "intelligent". Switchable and Responsive Surfaces and Materials for Biomedical Applications outlines synthetic and biological materials that are responsive under different stimuli, their surface design and modification techniques, and applicability in regenerative medicine/tissue engineering, drug delivery, medical devices, and biomedical diagnostics. Part one provides a detailed overview of switchable and responsive materials and surfaces, exploring thermo-responsive polymers, environmentally responsive polyelectrolytes and zwitterionic polymers, as well as peptide-based and photonic sensitive switchable materials. Further chapters include a detailed overview of the preparation and analysis of switchable polymer brushes and copolymers for biomedical application. Part two explores the biological interactions and biomedical applications of switchable surfaces, where expert analysis is provided on the interaction of switchable surfaces with proteins and cells. The interaction of stimuli-sensitive polymers for tissue engineering and drug delivery with biosurfaces is critiqued, whilst the editor provides a skillful study into the application of responsive polymers in implantable medical devices and biosensors. - A comprehensive overview of switchable and responsive materials and surfaces - Includes in depth analysis of thermo-responsive polymers, photonic sensitive materials and peptide-based surfaces - Detailed exploration of biological interactions of responsive and switchable surfaces, covering stimuli-sensitive polymers for drug delivery, surfaces with proteins/cells and application of polymers in medical devices




Switchable and Responsive Surfaces and Materials for Biomedical Applications


Book Description

Surface modification of biomaterials can ultimately determine whether a material is accepted or rejected from the human body, and a responsive surface can further make the material "smart" and "intelligent". Switchable and Responsive Surfaces and Materials for Biomedical Applications outlines synthetic and biological materials that are responsive under different stimuli, their surface design and modification techniques, and applicability in regenerative medicine/tissue engineering, drug delivery, medical devices, and biomedical diagnostics. Part one provides a detailed overview of switchable and responsive materials and surfaces, exploring thermo-responsive polymers, environmentally responsive polyelectrolytes and zwitterionic polymers, as well as peptide-based and photonic sensitive switchable materials. Further chapters include a detailed overview of the preparation and analysis of switchable polymer brushes and copolymers for biomedical application. Part two explores the biological interactions and biomedical applications of switchable surfaces, where expert analysis is provided on the interaction of switchable surfaces with proteins and cells. The interaction of stimuli-sensitive polymers for tissue engineering and drug delivery with biosurfaces is critiqued, whilst the editor provides a skillful study into the application of responsive polymers in implantable medical devices and biosensors.




Biophotonics for Medical Applications


Book Description

Biophotonics for Medical Applications presents information on the interface between laser optics and cell biology/medicine. The book discusses the development and application of photonic techniques that aid the diagnosis and therapeutics of biological tissues in both healthy and diseased states. Chapters cover the fundamental technologies used in biophotonics and a wide range of therapeutic and diagnostic applications. - Presents information on the interface between laser optics and cell biology/medicine - Discusses the development and application of photonic techniques which aid the diagnosis and therapeutics of biological tissues in both healthy and diseased states - Presents the fundamental technologies used in biophotonics and a wide range of therapeutic and diagnostic applications




Smart Polymers and Their Applications


Book Description

Smart Polymers and Their Applications, Second Edition presents an up-to-date resource of information on the synthesis and properties of different types of smart polymers, including temperature, pH, electro, magnetic and photo-responsive polymers, amongst others. It is an ideal introduction to this field, as well as a review of the latest research in this area. Shape memory polymers, smart polymer hydrogels, and self-healing polymer systems are also explored. In addition, a very strong focus on applications of smart polymers is included for tissue engineering, smart polymer nanocarriers for drug delivery, and the use of smart polymers in medical devices. Additionally, the book covers the use of smart polymers for textile applications, packaging, energy storage, optical data storage, environmental protection, and more. This book is an ideal, technical resource for chemists, chemical engineers, materials scientists, mechanical engineers and other professionals in a range of industries. - Includes a significant number of new chapters on smart polymer materials development, as well as new applications development in energy storage, sensors and devices, and environmental protection - Provides a multidisciplinary approach to the development of responsive polymers, approaching the subject by the different types of polymer (e.g. temperature-responsive) and its range of applications




Additive Manufacturing Processes in Biomedical Engineering


Book Description

This book covers innovative breakthroughs in additive manufacturing processes used for biomedical engineering. More and more, 3D printing is selected over traditional manufacturing processes, especially for complex designs, because of the many advantages such as fewer restrictions, better production cost savings, higher quality control, and accuracy. Current challenges and opportunities regarding material, design, cost savings, and efficiency are covered along with an outline of the most recent fabrication methods used for converting biomaterials into integrated structures that can fit best in anatomy while still obtaining the necessary architecture, mechanical reliability, biocompatibility, and anti-bacterial characteristics needed. Additional chapters will also focus on selected areas of applications such as bionics, affordable prostheses, implants, medical devices, rapid tooling, and drug delivery. Additive Manufacturing Processes in Biomedical Engineering: Advanced Fabrication Methods and Rapid Tooling Techniques acts as a first-hand reference for commercial manufacturing organizations which are mimicking tissue organs by using additive manufacturing techniques. By capturing the current trends of today’s manufacturing practices this book becomes a one-stop resource for manufacturing professionals, engineers in related disciplines, and academic researchers.




Biosynthetic Polymers for Medical Applications


Book Description

Biosynthetic Polymers for Medical Applications provides the latest information on biopolymers, the polymers that have been produced from living organisms and are biodegradable in nature. These advanced materials are becoming increasingly important for medical applications due to their favorable properties, such as degradability and biocompatibility. This important book provides readers with a thorough review of the fundamentals of biosynthetic polymers and their applications. Part One covers the fundamentals of biosynthetic polymers for medical applications, while Part Two explores biosynthetic polymer coatings and surface modification. Subsequent sections discuss biosynthetic polymers for tissue engineering applications and how to conduct polymers for medical applications. - Comprehensively covers all major medical applications of biosynthetic polymers - Provides an overview of non-degradable and biodegradable biosynthetic polymers and their medical uses - Presents a specific focus on coatings and surface modifications, biosynthetic hydrogels, particulate systems for gene and drug delivery, and conjugated conducting polymers




Soft Matter Systems for Biomedical Applications


Book Description

This book addresses new challenges in soft matter and colloids. It presents timely reports on colloidal self-assembly, soft matters from liquid crystals, nanoparticles in liquid crystals, hydrocolloids, hybrid nanosystems, nanosuspensions, and dispersion of nanoparticles in different media, soft matter processing and modern experiments related with soft matters.




Advances in Polyurethane Biomaterials


Book Description

Advances in Polyurethane Biomaterials brings together a thorough review of advances in the properties and applications of polyurethanes for biomedical applications. The first set of chapters in the book provides an important overview of the fundamentals of this material with chapters on properties and processing methods for polyurethane. Further sections cover significant uses such as their tissue engineering and vascular and drug delivery applications Written by an international team of leading authors, the book is a comprehensive and essential reference on this important biomaterial. - Brings together in-depth coverage of an important material, essential for many advanced biomedical applications - Connects the fundamentals of polyurethanes with state-of-the-art analysis of significant new applications, including tissue engineering and drug delivery - Written by a team of highly knowledgeable authors with a range of professional and academic experience, overseen by an editor who is a leading expert in the field




Biomineralization and Biomaterials


Book Description

Biomineralization is a natural process by which living organisms form minerals in association with organic biostructures to form hybrid biological materials such as bone, enamel, dentine and nacre among others. Scientists have researched the fundamentals of these processes and the unique structures and properties of the resulting mineralized tissues. Inspired by them, new biomaterials for tissue engineering and regenerative medicine have been developed in recent years. Biomineralization and biomaterials: fundamentals and applications looks at the characteristics of these essential processes and natural materials and describes strategies and technologies to biomimetically design and produce biomaterials with improved biological performance. - Provides a thorough overview of the biomineralization process - Presents the most recent information on the natural process by which crystals in tissues form into inorganic structures such as bone, teeth, and other natural mineralized tissues - Investigates methods for improving mineralization - Explores new techniques that will help improve the biomimetic process




Stimuli-Responsive Nanocarriers for Targeted Drug Delivery


Book Description

Stimuli-Responsive Nanocarriers for Targeted Drug Delivery presents a comprehensive overview of the most significant physical and chemical stimuli-responsive drug delivery systems. This book reviews targeted and controlled drug delivery systems and how nanocarriers can be used to improve the pharmacokinetics of drugs in biological systems, such as increasing utilization rate and reducing toxicity and side effects. After a key introduction to the topic, a range of nanocarrier types is assessed before exploring the clinical translation challenges and considerations involved.This book is a useful resource for researchers and postgraduate students in the fields of materials science, nanotechnology, pharmaceutical science, and medicinal chemistry. - Offers an in-depth look at the basic and fundamental aspects of stimuli-responsive materials, mechanisms, structure, synthesis and properties - Provides information about well-defined categorization for stimuli-responsive drug delivery system based on different triggering mechanisms to its reader - Reviews basic concepts and the latest research involving advances in stimuli-responsive drug delivery systems in controlled-release drugs - Discusses novel approaches and challenges for scaling-up and commercialization of stimuli-responsive polymers