Syngas Production: Status and Potential for Implementation in Russian Industry


Book Description

This book focuses on the assessment of different coal gasification technologies for the utilization of Russian coals with analyses of economically feasible process chains for preparation of marketable products from high-ash coals. The work presented is important in view of the general competitiveness that marks the future of coal in the world. As the cheapest form of fuel (in comparable terms) coal will undoubtedly be in demand resources in the world. The book consists of parts which include an overview about the major coal characteristics, detailed discussion of fundamental aspects of gasification technologies and gasifiers, an introduction into annex concepts, an overview about different technologies of syngas utilization, technical and economic assessment of several coal-to-liquid and coal-to-chemicals routes, and feasibility demonstration for selected process chains. This book is addressed to the management and engineers of Russian coal companies and scientific staff of Russian research institutions working in the field of coal utilization.




Gasification


Book Description

Gasification provides a series of workflow process fundamentals set within authentic contexts and case studies while exploring the pathways for gasification optimization, the effect of fuel blending in gasification systems, and the use of Computational Fluid Dynamics to describe said processes. Comprehensive in its coverage, this book allows engineering graduate students, advanced undergraduates, researchers and industry practitioners to further advance their own gasification strategy and understanding. Key features: Compares gasification with pyrolysis and combustion. Covers broad gasification mechanisms, experimental procedures, and numerical modelling. Provides techno-economic analysis applied to gasification systems coupled with risk analysis. Describes state-of-the-art processes concerning the co-firing of ammonia, coal and biomass.




Combustion Chemistry and the Carbon Neutral Future


Book Description

As the demands for cleaner, more efficient, reduced and zero carbon emitting transportation increase, the traditional focus of Combustion Chemistry research is stretching and adapting to help provide solutions to these contemporary issues. Combustion Chemistry and the Carbon Neutral Future: What will the Next 25 Years of Research Require? presents a guide to current research in the field and an exploration of possible future steps as we move towards cleaner, greener and reduced carbon combustion chemistry. Beginning with a discussion of engine emissions and soot, the book goes on to discuss a range of alternative fuels, including hydrogen, ammonia, small alcohols and other bio-oxygenates, natural gas, syngas and synthesized hydrocarbon fuels. Methods for predicting and improving efficiency and sustainability, such as low temperature and catalytic combustion, chemical looping, supercritical fluid combustion, and diagnostic monitoring even at high pressure, are then explored. Some novel aspects of biomass derived aviation fuels and combustion synthesis are also covered. Combining the knowledge and experience of an interdisciplinary team of experts in the field, Combustion Chemistry and the Carbon Neutral Future: What will the Next 25 Years of Research Require? is an insightful guide to current and future focus areas for combustion chemistry researchers in line with the transition to greener, cleaner technologies. - Provides insight on current developments in combustion chemistry as a tool for supporting a reduced-carbon future - Reviews modeling and diagnostic tools, in addition to key approaches and alternative fuels - Includes projections for the future from leaders in the field, pointing current and prospective researchers to potentially fruitful areas for exploration




Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining


Book Description

This volume gathers the latest advances, innovations, and applications in the field of mining, geology and geo-spatial technologies, as presented by leading researchers and engineers at the International Conference on Innovations for Sustainable and Responsible Mining (ISRM), held in Hanoi, Vietnam on October 15-17 2020. The contributions cover a diverse range of topics, including mining technology, drilling and blasting engineering, tunneling and geotechnical applications, mineral processing, mine management and economy, environmental risk assessment and management, mining and local development, mined land rehabilitation, water management and hydrogeology, regional Geology and tectonics, spatial engineering for monitoring natural resources and environment change, GIS and remote sensing for natural disaster monitoring, risk mapping and revisualization, natural resources monitoring and management, mine occupational safety and health. Selected by means of a rigorous peer-review process, they will spur novel research directions and foster future multidisciplinary collaborations.




Chemical Technology


Book Description

A fully updated edition of a popular textbook covering the four disciplines of chemical technology?featuring new developments in the field Clear and thorough throughout, this textbook covers the major sub-disciplines of modern chemical technology?chemistry, thermal and mechanical unit operations, chemical reaction engineering, and general chemical technology?alongside raw materials, energy sources and detailed descriptions of 24 important industrial processes and products. It brings information on energy and raw material consumption and production data of chemicals up to date and offers not just improved and extended chapters, but completely new ones as well. This new edition of Chemical Technology: From Principles to Products features a new chapter illustrating the global economic map and its development from the 15th century until today, and another on energy consumption in human history. Chemical key technologies for a future sustainable energy system such as power-to-X and hydrogen storage are now also examined. Chapters on inorganic products, material reserves, and water consumption and resources have been extended, while another presents environmental aspects of plastic pollution and handling of plastic waste. The book also adds four important processes to its pages: production of titanium dioxide, silicon, production and chemical recycling of polytetrafluoroethylene, and fermentative synthesis of amino acids. -Provides comprehensive coverage of chemical technology?from the fundamentals to 24 of the most important processes -Intertwines the four disciplines of chemical technology: chemistry, thermal and mechanical unit operations, chemical reaction engineering and general chemical technology -Fully updated with new content on: power-to-X and hydrogen storage; inorganic products, including metals, glass, and ceramics; water consumption and pollution; and additional industrial processes -Written by authors with extensive experience in teaching the topic and helping students understand the complex concepts Chemical Technology: From Principles to Products, Second Edition is an ideal textbook for advanced students of chemical technology and will appeal to anyone in chemical engineering.




CO2 Sequestration and Valorization


Book Description

The reconciliation of economic development, social justice and reduction of greenhouse gas emissions is one of the biggest political challenges of the moment. Strategies for mitigating CO2 emissions on a large scale using sequestration, storage and carbon technologies are priorities on the agendas of research centres and governments. Research on carbon sequestration is the path to solving major sustainability problems of this century a complex issue that requires a scientific approach and multidisciplinary and interdisciplinary technology, plus a collaborative policy among nations. Thus, this challenge makes this book an important source of information for researchers, policymakers and anyone with an inquiring mind on this subject.




Green Chemistry for Sustainable Biofuel Production


Book Description

Renewable fuel research and process development requires interdisciplinary approaches involving chemists and physicists from both scientific and engineering backgrounds. Here is an important volume that emphasizes green chemistry and green engineering principles for sustainable process development from an interdisciplinary point of view. It creates an enriching knowledge base on green chemistry of biofuel production, sustainable process development, and green engineering principles for renewable fuel production. This book includes chapters contributed by both research scientists and research engineers with significant experience in biofuel chemistry and processes. The book offers an abundance of scientific experimental methods and analytical procedures and interpretation of the results that capture the state-of-the-art knowledge in this field. The wide range of topics make this book a valuable resource for academicians, researchers, industrial practitioners and scientists, and engineers in various renewable energy fields. Key features: • Emphasizes green chemistry and green engineering principles for sustainable process development for biofuel production • Discusses a wide array of biofuels from algal biomass to waste-to-energy technologies and wastewater treatment and activated sludge processes • Presents advances and developments in biofuel green chemistry and green engineering, including process intensification (microwaves/ultrasound), ionic liquids, and green catalysis • Looks at environmental assessment and economic impact of biofuel production










Biochar for Environmental Management


Book Description

Biochar is the carbon-rich product which occurs when biomass (such as wood, manure or crop residues) is heated in a closed container with little or no available air. It can be used to improve agriculture and the environment in several ways, and its persistence in soil and nutrient-retention properties make it an ideal soil amendment to increase crop yields. In addition to this, biochar sequestration, in combination with sustainable biomass production, can be carbon-negative and therefore used to actively remove carbon dioxide from the atmosphere, with potentially major implications for mitigation of climate change. Biochar production can also be combined with bioenergy production through the use of the gases that are given off in the pyrolysis process. The first edition of this book, published in 2009, was the definitive work reviewing the expanding research literature on this topic. Since then, the rate of research activity has increased at least ten-fold, and biochar products are now commercially available as soil amendments. This second edition includes not only substantially updated chapters, but also additional chapters: on environmental risk assessment; on new uses of biochar in composting and potting mixes; a new and controversial field of studying the effects of biochar on soil carbon cycles; on traditional use with very recent discoveries that biochar was used not only in the Amazon but also in Africa and Asia; on changes in water availability and soil water dynamics; and on sustainability and certification. The book therefore continues to represent the most comprehensive compilation of current knowledge on all aspects of biochar.