Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications


Book Description

A timely overview of fundamental and advanced topics of conjugated polymer nanostructures Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications is a comprehensive reference on conjugated polymers for energy applications. Distinguished academic and editor Srabanti Ghosh offers readers a broad overview of the synthesis, characterization, and energy-related applications of nanostructures based on conjugated polymers. The book includes novel approaches and presents an interdisciplinary perspective rooted in the interfacing of polymer and synthetic chemistry, materials science, organic chemistry, and analytical chemistry. This book provides complete descriptions of conjugated polymer nanostructures and polymer-based hybrid materials for energy conversion, water splitting, and the degradation of organic pollutants. Photovoltaics, solar cells, and energy storage devices such as supercapacitors, lithium ion battery electrodes, and their associated technologies are discussed, as well. Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications covers both the fundamental topics and the most recent advances in this rapidly developing area, including: The design and characterization of conjugated polymer nanostructures, including the template-free and chemical synthesis of polymer nanostructures Conjugated polymer nanostructures for solar energy conversion and environmental protection, including the use of conjugated polymer-based nanocomposites as photocatalysts Conjugated polymer nanostructures for energy storage, including the use of nanocomposites as electrode materials The presentation of different and novel methods of utilizing conjugated polymer nanostructures for energy applications Perfect for materials scientists, polymer chemists, and physical chemists, Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications also belongs on the bookshelves of organic chemists and any other practicing researchers, academics, or professionals whose work touches on these highly versatile and useful structures.




Synthesis and Characterisation of Non-Fullerene Electron Acceptors for Organic Photovoltaics


Book Description

This book reports on the design, synthesis and characterization of new small molecule electron acceptors for polymer solar cells. Starting with a detailed introduction to the science behind polymer solar cells, the author then goes on to review the challenges and advances made in developing non-fullerene acceptors so far. In the main body of the book, the author describes the design principles and synthetic strategy for a new family of acceptors, including detailed synthetic procedures and molecular modeling data used to predict physical properties. An indepth characterization of the photovoltaic performance, with transient absorption spectroscopy (TAS), photo-induced charge extraction, and grazing incidence X-ray diffraction (GIXRD) is also included, and the author uses this data to relate material properties and device performance. This book provides a useful overview for researchers beginning a project in this or related areas.




The Economic Utilisation of Food Co-Products


Book Description

As the world’s population continues to grow so does the demand for food, and in consequence the amount of material left over from food production. No longer considered simply as "waste", many food co-products are being identified as economically-viable raw materials and their potential is enhanced by modern processing technologies and the biorefinery concept. This book presents a general overview of the current situation, with perspectives from within the food industry and policy makers in the introductory chapters. These are followed by five chapters exploring modern advanced processing techniques. Further chapters are dedicated to separate food groups, including cereals, oils, rice and fish, exploring the potential for making the best use of the co-products generated. Many of the processing technologies discussed will be familiar to students and practitioners of green chemistry, but the book goes further in presenting examples and case studies, written by active workers in the field from across the globe. Food technicians and process engineers will be amongst the researchers in academia and industry and postgraduate students this book is aimed for.




Conjugated Polymers


Book Description

Many significant fundamental concepts and practical applications have developed since the publication of the best-selling second edition of the Handbook of Conducting Polymers. Now divided into two books, the third edition continues to retain the excellent expertise of the editors and world-renowned contributors while providing superior coverage of




Indoor Photovoltaics


Book Description

This is the first and most comprehensive guide on the modeling, engineering and reliable design of indoor photovoltaics which currently is the most promising and energy efficient power supply for edge nodes for the Internet of Things and other indoor devices. Indoor photovoltaics (IPV) has grown in importance over recent years. This can in part be attributed to the creation of the Internet of Things (IoT) and Artificial Intelligence (AI) along with the vast amounts of data being processed in the field, which has been a massive accelerator for this development. Moreover, since energy conservation is being imposed as the national strategy of many countries and is being set as a top priority throughout the world, understanding and promoting IPV as the most promising indoor energy harvesting source is considered by many to be essential these days. The book provides the engineer and researcher with guidelines, and presents a comprehensive overview of theoretical models, efficiencies, and application design. This unique and groundbreaking book has chapters by leading researchers on: Introduction to micro energy harvesting Introduction to indoor photovoltaics Modeling indoor irradiance Characterization and power measurement of IPV cells Luminescent solar concentrators Organic photovoltaic cells and modules for applications under indoor lighting conditions High-efficiency indoor photovoltaic energy harvesting Indoor photovoltaics based on ALGAAs alloys




Conjugated Polymer Synthesis


Book Description

Edited and authored by top international experts, this first book on conjugated polymers with a focus on synthesis provides a detailed overview of all modern synthetic methods for these highly interesting compounds. As such, it describes every important compound class, including polysilanes, organoboron compounds, and ferrocene-containing conjugated polymers. An indispensable source for every synthetic polymer chemist.




Sulfur-Containing Polymers


Book Description

A must-have resource to the booming field of sulfur-containing polymers Sulfur-Containing Polymers is a state-of-the-art text that offers a synthesis of the various sulfur-containing polymers from low-cost sulfur resources such as elemental sulfur, carbon disulfide (CS2), carbonyl sulfide (COS) and mercaptan. With contributions from noted experts on the topic, the book presents an in-depth understanding of the mechanisms related to the synthesis of sulfur-containing polymers. The book also includes a review of the various types of sulfur-containing polymers, such as: poly(thioester)s, poly(thioether)s and poly(thiocarbonate)s and poly(thiourethane)s with linear or hyperbranched (dendrimer) architectures. The expert authors provide the fundamentals on the structure-property relationship and applications of sulfur-containing polymers. Designed to be beneficial for both research and application-oriented chemists and engineers, the book contains the most recent research and developments of sulfur-containing polymers. This important book: Offers the first comprehensive handbook on the topic Contains state-of-the-art research on synthesis of sulfur containing polymers from low-cost sulfur-containing compounds Examines the synthesis, mechanism, structure properties, and applications of various types of sulful-containing polymers Includes contributions from well-known experts Written for polymer chemists, materials scientists, chemists in industry, biochemists, and chemical engineers, Sulfur-Containing Polymers offers a groundbreaking text to the field with inforamtion on the most recent research.




Conjugated Polymers


Book Description

The Fourth Edition of the Handbook of Conducting Polymers, Two-Volume Set continues to be the definitive resource on the topic of conducting polymers. Completely updated with an extensive list of authors that draws on past and new contributors, the book takes into account the significant developments both in fundamental understanding and applications since publication of the previous edition. One of two volumes comprising the comprehensive Handbook, Conjugated Polymers: Perspective, Theory, and New Materials features new chapters on the fundamental theory and new materials involved in conducting polymers. It discusses the history of physics and chemistry of these materials and the theory behind them. Finally, it details polymer and materials chemistry including such topics as conjugated block copolymers, metal-containing conjugated polymers, and continuous flow processing. Aimed at researchers, advanced students, and industry professionals working in materials science and engineering, this book covers fundamentals, recent progress, and new materials involved in conducting polymers and includes a wide-ranging listing of comprehensive chapters authored by an international team of experts.




Conjugated Conducting Polymers


Book Description

This book reviews the current understanding of electronic, optical and magnetic properties of conjugated polymers in both the semiconducting and metallic states. It introduces in particular novel phenomena and concepts in these quasi one-dimensional materials that differ from the well-established concepts valid for crystalline semiconductors. After a brief introductory chapter, the second chapter presents basic theore tical concepts and treats in detail the various models for n-conjugated polymers and the computational methods required to derive observable quantities. Specific spatially localized structures, often referred to as solitons, polarons and bipolarons, result naturally from the interaction between n-electrons and lattice displacements. For a semi-quantitative understanding of the various measure ments, electron-electron interactions have to be incorporated in the models; this in turn makes the calculations rather complicated. The third chapter is devoted to the electrical properties of these materials. The high metallic conductivity achieved by doping gave rise to the expression conducting polymers, which is often used for such materials even when they are in their semiconducting or insulating state. Although conductivity is one of the most important features, the reader will learn how difficult it is to draw definite conclusions about the nature of the charge carriers and the microscopic transport mechanism solely from electrical measurements. Optical properties are discussed in the fourth chapter.




Fundamentals of Conjugated Polymer Blends, Copolymers and Composites


Book Description

Since their discovery in 1977, the evolution of conducting polymers has revolutionized modern science and technology. These polymers enjoy a special status in the area of materials science yet they are not as popular among young readers or common people when compared to other materials like metals, paper, plastics, rubber, textiles, ceramics and composites like concrete. Most importantly, much of the available literature in the form of papers, specific review articles and books is targeted either at advanced readers (scientists / technologists / engineers / senior academicians) or for those who are already familiar with the topic (doctoral / postdoctoral scholars). For a beginner or even school / college students, such compilations are bit difficult to access / digest. In fact, they need proper introduction to the topic of conducting polymers including their discovery, preparation, properties, applications and societal impact, using suitable examples and already known principles/knowledge/phenomenon. Further, active participation of readers in terms of "question & answers", "fill-in-the-blanks", "numerical" along with suitable answer key is necessary to maintain the interest and to initiate the "thought process". The readers also need to know about the drawbacks and any hazards of such materials. Therefore, I believe that a comprehensive source on the science / technology of conducting polymers which maintains a link between grass root fundamentals and state-of-the-art R&D is still missing from the open literature.