Perovskite Metal Oxides


Book Description

Perovskite Metal Oxides: Synthesis, Properties and Applications provides an overview on the topic, including the synthesis of various types of perovskites, their properties, characterization and application. The book reviews the applications of this category of materials for photovoltaics, electronics, biomedical, fuel cell, photocatalyst, sensor, energy storage and catalysis, along with processing techniques of perovskite metal oxides with a focus on low-cost and high-efficiency methods, including various properties and probable applications in academia and industry. Other sections discuss strategies to improve the functionality of perovskite metal oxide materials, including chemical methods and controlling the size, shape and structure of the materials. Finally, applications of perovskite metal oxides in energy conversion and storage, sensing and electronics are covered. - Provides an overview of perovskite metal oxides, with an emphasis on synthesis, fabrication and characterization methods - Discusses strategies to improve the functionality of perovskite metal oxide materials, including chemical methods and controlling the size, shape and structure of the materials - Reviews applications of perovskite metal oxides in energy conversion and storage, sensing and electronics




Multifunctional Inorganic Nanomaterials for Energy Applications


Book Description

Multifunctional Inorganic Nanomaterials for Energy Applications provides deep insight into the role of multifunctional nanomaterials in the field of energy and power generation applications. It mainly focuses on the synthesis, fabrication, design, development, and optimization of novel functional inorganic nanomaterials for energy storage and saving devices. It also covers studies of inorganic electrode materials for supercapacitors, membranes for batteries and fuel cells, and materials for display systems and energy generation. Features: Explores computational and experimental methods of preparing inorganic nanomaterials and their multifunctional applications Includes synthesis and performance analysis of various functional nanomaterials for energy storage and saving applications Reviews current research directions and latest developments in the field of energy materials Discusses importance of computational techniques in designing novel nanomaterials Highlights importance of multifunctional applications of nanomaterials in the energy sector This book is aimed at graduate students and researchers in materials science, electrical engineering, and nanomaterials.




Perovskite Materials


Book Description

The book summarizes the current state of the know-how in the field of perovskite materials: synthesis, characterization, properties, and applications. Most chapters include a review on the actual knowledge and cutting-edge research results. Thus, this book is an essential source of reference for scientists with research fields in energy, physics, chemistry and materials. It is also a suitable reading material for graduate students.




Chemical Solution Synthesis for Materials Design and Thin Film Device Applications


Book Description

Chemical Solution Synthesis for Materials Design and Thin Film Device Applications presents current research on wet chemical techniques for thin-film based devices. Sections cover the quality of thin films, types of common films used in devices, various thermodynamic properties, thin film patterning, device configuration and applications. As a whole, these topics create a roadmap for developing new materials and incorporating the results in device fabrication. This book is suitable for graduate, undergraduate, doctoral students, and researchers looking for quick guidance on material synthesis and device fabrication through wet chemical routes. Provides the different wet chemical routes for materials synthesis, along with the most relevant thin film structured materials for device applications Discusses patterning and solution processing of inorganic thin films, along with solvent-based processing techniques Includes an overview of key processes and methods in thin film synthesis, processing and device fabrication, such as nucleation, lithography and solution processing




Nanomaterials


Book Description

Intended as a reference for basic and practical knowledge about the synthesis, characterization, and applications of nanotechnology for students, engineers, and researchers, this book focuses on the production of different types of nanomaterials and their applications, particularly synthesis of different types of nanomaterials, characterization of




Synthesis, Properties, and Applications of Oxide Nanomaterials


Book Description

Current oxide nanomaterials knowledge to draw from and build on Synthesis, Properties, and Applications of Oxide Nanomaterials summarizes the existing knowledge in oxide-based materials research. It gives researchers one comprehensive resource that consolidates general theoretical knowledge alongside practical applications. Organized by topic for easy access, this reference: * Covers the fundamental science, synthesis, characterization, physicochemical properties, and applications of oxide nanomaterials * Explains the fundamental aspects (quantum-mechanical and thermodynamic) that determine the behavior and growth mode of nanostructured oxides * Examines synthetic procedures using top-down and bottom-up fabrication technologies involving liquid-solid or gas-solid transformations * Discusses the sophisticated experimental techniques and state-of-the-art theory used to characterize the structural and electronic properties of nanostructured oxides * Describes applications such as sorbents, sensors, ceramic materials, electrochemical and photochemical devices, and catalysts for reducing environmental pollution, transforming hydrocarbons, and producing hydrogen With its combination of theory and real-world applications plus extensive bibliographic references, Synthesis, Properties, and Applications of Oxide Nanomaterials consolidates a wealth of current, complex information in one volume for practicing chemists, physicists, and materials scientists, and for engineers and researchers in government, industry, and academia. It's also an outstanding reference for graduate students in chemistry, chemical engineering, physics, and materials science.




Functional Oxides


Book Description

Functional oxides have a wide variety of applications in the electronic industry. The discovery of new metal oxides with interesting and useful properties continues to drive much research in chemistry, physics, and materials science. In Functional Oxides five topical areas have been selected to illustrate the importance of metal oxides in modern materials chemistry: Noncentrosymmetric Inorganic Oxide Materials Geometrically Frustrated Magnetic Materials Lithium Ion Conduction in Oxides Thermoelectric Oxides Transition Metal Oxides - Magnetoresistance and Half-Metallicity The contents highlight structural chemistry, magnetic and electronic properties, ionic conduction and other emerging areas of importance, such as thermoelectricity and spintronics. Functional Oxides covers these complex concepts in a clear and accessible manner providing an excellent introduction to this broad subject area.




Nanocatalysis


Book Description

Nanocatalysis, a subdiscipline of nanoscience, seeks to control chemical reactions by changing the size, dimensionality, chemical composition, and morphology of the reaction center and by changing the kinetics using nanopatterning of the reaction center. This book offers a detailed pedagogical and methodological overview of the field. Readers discover many examples of current research, helping them explore new and emerging applications.




Magnetic, Ferroelectric, and Multiferroic Metal Oxides


Book Description

Magnetic, Ferroelectric, and Multiferroic Metal Oxides covers the fundamental and theoretical aspects of ferroics and magnetoelectrics, their properties, and important technological applications, serving as the most comprehensive, up-to-date reference on the subject. Organized in four parts, Dr. Biljana Stojanovic leads expert contributors in providing the context to understand the material (Part I: Introduction), the theoretical and practical aspects of ferroelectrics (Part II: Ferroelectrics: From Theory, Structure and Preparation to Application), magnetic metal oxides (Part III: Magnetic Oxides: Ferromagnetics, Antiferromagnetics and Ferrimagnetics), multiferroics (Part IV: Multiferroic Metal Oxides) and future directions in research and application (Part V: Future of Metal Oxide Ferroics and Multiferroics). As ferroelectric materials are used to make capacitors with high dielectric constant, transducers, and actuators, and in sensors, reed heads, and memories based on giant magnetoresistive effects, this book will provide an ideal source for the most updated information. - Addresses ferroelectrics, ferromagnetics and multiferroelectrics, providing a one-stop reference for researchers - Provides fundamental theory and relevant, important technological applications - Highlights their use in capacitors with high dielectric constant, transducers, and actuators, and in sensors, reed heads, and memories based on giant magnetoresistive effects




Perovskite and Piezoelectric Materials


Book Description

Investigating in the area of perovskite materials and the fabrication of devices for properties in optoelectronics, we have presented a brief outline of perovskite materials. The authors present a fairly comprehensive arrangement of this very active area of research, with its past changes and present position and outlooks. Discussions are presented regarding photocatalysis, fabrication of solar cell devices and their stability, lead-free materials, as well as thermoelectric and piezoelectric applications. In view of the present status of perovskite materials, I am assured that each chapter of the book will be of boundless encouragement for researchers, scientists, and academicians working in this field.