Development and Characterization of New Donor-Acceptor Conjugated Polymers and Fullerene Nanoparticles for High Performance Bulk Heterojunction Solar Cells


Book Description

Bithiophene/thieno[3,4-c]pyrrole-4,6-dione (TPD)-based donor-acceptor polymer, PBTTPD, that exhibits high crystallinity and a low-lying highest occupied molecular orbital was prepared. A device incorporating a PBTTPD/[6,6]-phenyl-C61-butyric acid methyl ester blend (1:1.5, w/w) displayed an open circuit voltage of 0.95 V and a power conversion efficiency of 4.7%. A molecular design concept was introduced to develop a series of new conjugated polymers with donor-pi-bridge-acceptor side chains for high-efficiency polymer solar cells. Different from the commonly used linear D-A conjugated polymers, the acceptor of the polymers are located at the end of the side chains and connected with the electron-rich unit on the main chain through a pi-bridge. This method provides a facile way to tune the bandgaps and energy levels of the polymers by simply varying the acceptors on the side chains. A systematic study was performed in this project to elucidate the relationship among molecular structure-morphology-device properties to explore the full potential of applying these new materials for OPV applications.




Synthetic Methods for Conjugated Polymer and Carbon Materials


Book Description

A concise and practical overview of the most important modern synthetic aspects of conjugated polymers and carbon materials, including their properties and applications. Well structured, this book summarizes recent achievements, outlines the current state and reviews research trends. As such, a wide variety of polymerization techniques are included on both a strategic as well as a practical level, including Stille, Suzuki , and direct (hetero)arylation polymerizations. Furthermore, it covers various carbon-rich materials, such as graphene and carbon nanotubes, followed by a look at how the different synthetic pathways and strategies influence their final properties, for example, for use in organic electronic devices. The whole is rounded off with a discussion of future technology advances. An essential reference for newcomers as well as experienced researchers in the field.




Synthesis and Characterization of Conjugated Polymers and Small Molecules for Organic Photovoltaic Devices


Book Description

Solar energy harvested directly from sunlight using photovoltaic (PV) technology has become one of the most promising ways to meet growing global energy needs with a sustainable resource while minimizing environmental concerns. Especially, organic bulk heterojunction (BHJ) solar cells have been attracting a great deal of interest as a source of renewable energy because of their potential as low-cost, flexible, light-weight and large-scale devices. The choice of materials in a BHJ solar cell is very important for device performance because the power conversion efficiencies (PCEs) are determined by their some crucial characteristics such as energy levels, charge transfer mobilities and structural orders. In this dissertation, two carbazole-diketopyrrolopyrrole based conjugated polymers (P1 and P2) and three thieno-[3,4-c]pyrrole-4,6-dione (TPD) based small molecules (M1, SM1 and SM2) were synthesized and characterized to investigate their optical, electrical and photovoltaic properties. First, the substitution of alkyl and aryl side chains on the carbazole moiety of two push-pull conjugated polymers (P1 and P2) shows the significant differences in the optical, electrical and photovoltaic properties. Second, TPD-based conjugated small molecule with a donor-acceptor-donor-acceptor-donor (D-A-D-A-D) framework, M1 shows the relatively deep HOMO level resulting the relatively high Voc.(0.85 eV) Small molecule BHJ solar cells were fabricated and characterized using different M1:PC71BM blend ratios, solvents, and additives and the highest PCE achieved in this study was 1.86%. Lastly, different bridgehead atoms of SM1 and SM2 can affect their energy band levels and device performances. The PCE (2.5%) of the SM2-based SM-BHJ solar cell was higher than that of the SM1-based SM-BHJ solar cell (1.5%).




Multiscale Modelling of Organic and Hybrid Photovoltaics


Book Description

The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.




Design, Synthesis and Characterization of Self-assembling Conjugated Polymers for Use in Organic Electronic Applications


Book Description

Conjugated polymers comprise some of the most promising materials for new technologies such as organic field effect transistors, solar light harvesting technology and sensing devices. In spite of tremendous research initiatives in materials chemistry, the potential to optimize device performance and develop new technologies is remarkable. Understanding relationships between the structure of conjugated polymers and their electronic properties is critical to improving device performance. The design and synthesis of new materials which self-organize into ordered nanostructures creates opportunities to establish relationships between electronic properties and morphology or molecular packing. This thesis details our progress in the development of synthetic routes which provide access to new classes of conjugated polymers that contain dissimilar side chains that segregate or dissimilar conjugated blocks which phase separate, and summarizes our initial attempts to characterize these materials. Poly(1,4-phenylene ethynylene)s (PPEs) have been used in a variety of organic electronic applications, most notably as fluorescent sensors. Using traditional synthetic methods, asymmetrically disubstituted PPEs have irregular placement of side chains on the conjugated backbone. Herein, we establish the first synthetic route to an asymmetrically substituted regioregular PPEs. The initial PPEs in this study have different lengths of alkoxy side chains, and both regioregular and regiorandom analogs are synthesized and characterized for comparison. The design of amphiphilic structures provides additional opportunities for side chains to influence the molecular packing and electronic properties of conjugated polymers. A new class of regioregular, amphiphilic PPEs has been prepared bearing alkoxy and semifluoroalkoxy side chains, which have a tendency to phase separate. Fully conjugated block copolymers can provide access to interesting new morphologies as a result of phase separation of the conjugated blocks. In particular, donor-acceptor block copolymers that phase separate into electron rich and electron poor domains may be advantageous in organic electronic devices such as bulk heterojunction solar cells, of which the performance relies on precise control of the interface between electron donating and accepting materials. The availability of donor-acceptor block copolymers is limited, largely due to the challenges associated with synthesizing these materials. In this thesis, two new synthetic routes to donor-acceptor block copolymers are established. These methods both utilize the catalyst transfer condensation polymerization, which proceeds by a chain growth mechanism. The first example entails the synthesis of a monofunctionalized, telechelic poly(3-alkylthiophene) which can be coupled to electron accepting polymers in a subsequent reaction. The other method describes the first example of a one-pot synthesis of a donor-acceptor diblock copolymer. The methods of synthesis are described, and characterization of the block copolymers is reported.







Conjugated Polymer Synthesis


Book Description

Edited and authored by top international experts, this first book on conjugated polymers with a focus on synthesis provides a detailed overview of all modern synthetic methods for these highly interesting compounds. As such, it describes every important compound class, including polysilanes, organoboron compounds, and ferrocene-containing conjugated polymers. An indispensable source for every synthetic polymer chemist.




Fundamentals of Conjugated Polymer Blends, Copolymers and Composites


Book Description

Since their discovery in 1977, the evolution of conducting polymers has revolutionized modern science and technology. These polymers enjoy a special status in the area of materials science yet they are not as popular among young readers or common people when compared to other materials like metals, paper, plastics, rubber, textiles, ceramics and composites like concrete. Most importantly, much of the available literature in the form of papers, specific review articles and books is targeted either at advanced readers (scientists / technologists / engineers / senior academicians) or for those who are already familiar with the topic (doctoral / postdoctoral scholars). For a beginner or even school / college students, such compilations are bit difficult to access / digest. In fact, they need proper introduction to the topic of conducting polymers including their discovery, preparation, properties, applications and societal impact, using suitable examples and already known principles/knowledge/phenomenon. Further, active participation of readers in terms of "question & answers", "fill-in-the-blanks", "numerical" along with suitable answer key is necessary to maintain the interest and to initiate the "thought process". The readers also need to know about the drawbacks and any hazards of such materials. Therefore, I believe that a comprehensive source on the science / technology of conducting polymers which maintains a link between grass root fundamentals and state-of-the-art R&D is still missing from the open literature.