Synthesis and Characterization of Novel Functional Lignins -


Book Description

This thesis presents novel pathways for one step or two step modifications of different types of lignin without the need of any catalyst. Such novel functional lignins were characterized in detail and are now ready for their utilization in novel polymeric materials and thus for new applications. Hereby the value of lignin can be increased by offering novel strategies of incorporating lignins as building block into polyurethanes, but also various other polymer matrices are thinkable for future studies.







Biobased Products and Industries


Book Description

Biobased Products and Industries fills the gap between academia and industry by covering all the important aspects of biobased products and their relevant industries in one single reference. Highlighting different perspectives of the bioeconomy, EU relevant projects, as well as the environmental impact of biobased materials and sustainability, the book covers biobased polymers, plastics, nanocomposites, packaging materials, electric devices, biofuels, textiles, consumer goods, and biocatalysis for the decarboxylation and decarboxylation of biobased molecules, including biobased products from alternative sources (algae) and the biobased production of chemicals through metabolic engineering. Focusing on the most recent advances in the field, the book also analyzes the potentiality of already commercialized processes and products. - Highlights the important aspects of biobased products as well as their relevant industries in one single reference - Focuses on the most recent advances in the field, analyzing the potentiality of already commercialized processes and products - Provides an ideal resource for anyone dealing with bioresource technology, biomass valorization and new products development




Biorefinery: A Sustainable Approach for the Production of Biomaterials, Biochemicals and Biofuels


Book Description

This book discusses recent trends and concepts in the field of biorefinery. It discusses optimal and economic strategies for converting biomass to value-added products to maximize profits with minimal environmental impact with a sustainability approach. The chapters of the book are focused on the current technologies, techno-economical aspects, life cycle assessment, and case studies. The book is divided into three sections; the first section presents strategies for the production of biofuels like bioethanol, biomethane, biohydrogen, bio-oil, gasification, etc., from the biomass in a sustainable way. The second sections review the extraction of bioactive chemicals, phenolic antioxidants, enzymes, and carboxylic acid from the biomass residue. The last section examines the utilization of biomass for the production of bioactive materials, including biofertilizers, bioadsorbents, activated carbon, nano-materials, and pigments. This book explores the relation between biofuels and the sustainable development goals (SDGs) 7.




Lignin-based Materials for Biomedical Applications


Book Description

Lignin-based Materials for Biomedical Applications: Preparation, Characterization, and Implementation explores the emerging area of lignin-based materials as a platform for advanced biomedical applications, guiding the reader from source through to implementation. The first part of the book introduces the basics of lignin, including extraction methods, chemical modifications, structure and composition, and properties that make lignin suitable for biomedical applications. In addition, structural characterization techniques are described in detail. The next chapters focus on the preparation of lignin-based materials for biomedical applications, presenting methodologies for lignin-based nanoparticles, hydrogels, aerogels, and nanofibers, and providing in-depth coverage of lignin-based materials with specific properties—including antioxidant properties, UV absorbing capability, antimicrobial properties, and colloidal particles with tailored properties—and applications, such as drug and gene delivery, and tissue engineering. Finally, future perspectives and possible new applications are considered. This is an essential reference for all those with an interest in lignin-based materials and their biomedical applications, including researchers and advanced students across bio-based polymers, polymer science, polymer chemistry, biomaterials, nanotechnology, materials science and engineering, drug delivery, and biomedical engineering, as well as industrial R&D and scientists involved with bio-based polymers, specifically for biomedical applications. - Unlocks the potential of lignin-based materials with advanced properties for cutting-edge applications in areas such as drug delivery, gene delivery and tissue engineering - Presents state-of-the-art methodologies used in the development of lignin-based nanoparticles, hydrogels, aerogels and nanofibers - Explains the fundamentals of lignin, including structure and composition, extraction and isolation methods, types and properties, chemical modifications, and characterization techniques




Functional Polyurethanes – In Memory of Prof. József Karger-Kocsis


Book Description

This book is a collection of 22 per-reviewed scientific papers on the synthesis and characterization of polyurethanes with special chemical and physical properties. In our "plastic age", polyurethanes are one of the most versatile polymers with broad and excellent mechanical and chemical properties. These polyurethanes can be found in many areas of our every day`s life ranging from insulators through hard and soft foams to various biomedical devices. The huge number of possible variations in the types of reactants allows the scientists to design and tailor the properties of polyurethanes to specific needs. The fascinating chemistry and materials science of polyurethanes have attracted interests of many scientists. As a result, the progress in this field made by these scholars are summarized in this book with special emphasizes on the structure-property relationships and biomedical applications of polyurethanes as well as their environmental aspects are also highlighted in some papers. Thus, this collection of papers is recommended to all readers who are interested not only in the synthesis and properties of polyurethanes but want to be familiar with the theoretical description of their formation as well.




Bio-Based Polymers and Composites


Book Description

When applying human ingenuity and experience to natural resources and processes, scientists and researchers can maximize the potential of nature for human benefit. In that vein, this book explores the latest breakthroughs in natural biopolymers, green composites, and green nanocomposites, a field that is rapidly expanding. The volume looks at bio-based polymers and composites for environmental sustainability, such as in bioremediation and for wastewater treatment. It discusses natural polymers from waste products and considers the use of bio-based polymers and composites in fertilization in horticulture as well as in industry and construction, such as for recycling of concrete, for gas sensing applications for safety, for fiber-reinforced epoxy composites, etc.




Lignin Chemistry


Book Description

Lignin Chemistry A thorough reference guide to Lignin Chemistry, from inherent structure revealing to transformation into chemicals, fuels, and materials Climate change, driven by rising greenhouse gas emissions, is the defining challenge of our time. Reducing our dependence on non-renewable resources such as fossil fuels will require alternative, more sustainable resources. Lignin, the only widely-occurring, renewable, aromatic bio-polymer in Nature, has a range of application potential in the production of chemicals, fuels, and other industrial materials. Lignin science has become one of the fastest-growing and most significant areas of sustainable chemistry in the world. Lignin Chemistry: Characterization, Isolation, and Valorization presents a systematic, multidisciplinary overview of this cutting-edge field and its current state of research. Beginning with a robust characterization of lignin, the book addresses the isolation and transformation of lignin, as well as the book inspires with a plethora of applications. The result is a critical resource for researchers and professionals in any area of academic or industry where renewable biomass, in particular lignin, has importance. Lignin Chemistry readers will find: Thermochemical and catalytic strategies for lignin conversion Detailed discussion of the valorization of lignin towards biopolymers, nanoparticles, carbon fibers and materials, and hydrogels An authorial team with immense and varied research experience Lignin Chemistry is ideal for chemical engineers, catalytic chemists, biochemists, material scientists, and analytical chemists in industry.




Advances in Antimicrobial Coatings


Book Description

This book is motivated by our passion to compile recent research on antimicrobial surfaces. We aimed to assemble research papers on the preparation of new materials, antimicrobial testing using different pathogens (bacteria, fungi, and viruses), and the relationship between the coating nanostructure and its reactivity towards the studied pathogen(s). We believe that a good antimicrobial coating should by characterized by (i) a fast activity towards the pathogen, (ii) sustainable activity based on the stability of the coating, and (iii) the lowest possible toxicity for humans and reduced risks for the environment. Striking a compromise between these different challenges is difficult and requires more research.




Bio-based Flame-Retardant Technology for Polymeric Materials


Book Description

Bio-Based Flame Retardants for Polymeric Materials provides a comprehensive overview of flame retardants derived directly and indirectly from plant sources, drawing on cutting-edge research and covering preparation methods, testing and evaluation techniques, enhanced properties, and end applications. Chapters introduce bio-based materials in the context of additives for flame retardancy, explaining fundamentals and testing methods and analyzing synthetic approaches and the potential advantages of pursuing a bio-based approach. This is followed by detailed coverage of bio-based retardants, with each chapter covering a specific source and guiding the reader systematically through preparation techniques, evaluation methods, properties and applications. Throughout the book, the latest progress in the field is critically reviewed, and there is a continual emphasis on novel approaches to achieve enhanced properties and performant materials. This is an essential guide for all those with an interest in innovative, sustainable flame retardant additives for polymeric materials, including researchers, scientists, advanced students, and more. - Explains innovative techniques for the preparation of bio-based flame retardant mechanisms, analyzing properties, performance and applications - Offers in-depth coverage of a range of sources, including cellulose, lignin, cardanol, chitosan, eugenol, vanillin, furan, alginate and vegetable oils - Presents the latest advances in the field, serving as a novel resource to advanced students, researchers and R&D professionals in academia and industry