Conjugated Polymer Synthesis


Book Description

Edited and authored by top international experts, this first book on conjugated polymers with a focus on synthesis provides a detailed overview of all modern synthetic methods for these highly interesting compounds. As such, it describes every important compound class, including polysilanes, organoboron compounds, and ferrocene-containing conjugated polymers. An indispensable source for every synthetic polymer chemist.




Sulfur-Containing Polymers


Book Description

A must-have resource to the booming field of sulfur-containing polymers Sulfur-Containing Polymers is a state-of-the-art text that offers a synthesis of the various sulfur-containing polymers from low-cost sulfur resources such as elemental sulfur, carbon disulfide (CS2), carbonyl sulfide (COS) and mercaptan. With contributions from noted experts on the topic, the book presents an in-depth understanding of the mechanisms related to the synthesis of sulfur-containing polymers. The book also includes a review of the various types of sulfur-containing polymers, such as: poly(thioester)s, poly(thioether)s and poly(thiocarbonate)s and poly(thiourethane)s with linear or hyperbranched (dendrimer) architectures. The expert authors provide the fundamentals on the structure-property relationship and applications of sulfur-containing polymers. Designed to be beneficial for both research and application-oriented chemists and engineers, the book contains the most recent research and developments of sulfur-containing polymers. This important book: Offers the first comprehensive handbook on the topic Contains state-of-the-art research on synthesis of sulfur containing polymers from low-cost sulfur-containing compounds Examines the synthesis, mechanism, structure properties, and applications of various types of sulful-containing polymers Includes contributions from well-known experts Written for polymer chemists, materials scientists, chemists in industry, biochemists, and chemical engineers, Sulfur-Containing Polymers offers a groundbreaking text to the field with inforamtion on the most recent research.




Semiconducting Polymers


Book Description

Semiconducting polymers are of great interest for applications in electroluminescent devices, solar cells, batteries and diodes. In recent years vast advances have been made in the area of controlled synthesis of semiconducting polymers, specifically polythiophenes. The book is separated into two main sections, the first will introduce the advances made in polymer synthesis, and the second will focus on the microstructure and property analysis that has been enabled because of the recent advances in synthetic strategies. Edited by one of the leaders in the area of polythiophene synthesis, this new book will bring the field up to date with more recent models for understanding semiconducting polymers. The book will be applicable to materials and polymers chemists in industry and academia from postgraduate level upwards.




Synthetic Methods for Conjugated Polymer and Carbon Materials


Book Description

A concise and practical overview of the most important modern synthetic aspects of conjugated polymers and carbon materials, including their properties and applications. Well structured, this book summarizes recent achievements, outlines the current state and reviews research trends. As such, a wide variety of polymerization techniques are included on both a strategic as well as a practical level, including Stille, Suzuki , and direct (hetero)arylation polymerizations. Furthermore, it covers various carbon-rich materials, such as graphene and carbon nanotubes, followed by a look at how the different synthetic pathways and strategies influence their final properties, for example, for use in organic electronic devices. The whole is rounded off with a discussion of future technology advances. An essential reference for newcomers as well as experienced researchers in the field.




Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications


Book Description

A timely overview of fundamental and advanced topics of conjugated polymer nanostructures Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications is a comprehensive reference on conjugated polymers for energy applications. Distinguished academic and editor Srabanti Ghosh offers readers a broad overview of the synthesis, characterization, and energy-related applications of nanostructures based on conjugated polymers. The book includes novel approaches and presents an interdisciplinary perspective rooted in the interfacing of polymer and synthetic chemistry, materials science, organic chemistry, and analytical chemistry. This book provides complete descriptions of conjugated polymer nanostructures and polymer-based hybrid materials for energy conversion, water splitting, and the degradation of organic pollutants. Photovoltaics, solar cells, and energy storage devices such as supercapacitors, lithium ion battery electrodes, and their associated technologies are discussed, as well. Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications covers both the fundamental topics and the most recent advances in this rapidly developing area, including: The design and characterization of conjugated polymer nanostructures, including the template-free and chemical synthesis of polymer nanostructures Conjugated polymer nanostructures for solar energy conversion and environmental protection, including the use of conjugated polymer-based nanocomposites as photocatalysts Conjugated polymer nanostructures for energy storage, including the use of nanocomposites as electrode materials The presentation of different and novel methods of utilizing conjugated polymer nanostructures for energy applications Perfect for materials scientists, polymer chemists, and physical chemists, Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications also belongs on the bookshelves of organic chemists and any other practicing researchers, academics, or professionals whose work touches on these highly versatile and useful structures.




The Stille Reaction


Book Description

Die Stille-Reaktion ist eine der sehr wenigen Reaktionen, in denen unter milden Bedingungen Kohlenstoff-Kohlenstoff-Bindungen geknüpft werden können. Man verwendet die Reaktion häufig in der Synthese komplizierter Moleküle zur Verknüpfung größerer Molekülbausteine. Die Autoren diskutieren vom präparativen Standpunkt aus Grenzen, Einflüsse, strukturelle Effekte und die Wahl der geeigneten Reaktionsbedingungen. Mit ausführlichen Vorschriften und vielen Beispielen. (11/98)




Synthetic Molecular Sequences in Materials Science


Book Description

This monograph shares a newly emerging point of view among researchers and students in the field of materials science. Inspired by the presence of precisely determined molecular-level sequence structures in a wide range of biomolecules, a growing number of synthetic compounds with the same structural feature are appearing day by day. These examples in the interdisciplinary areas of materials science are collected in this monograph to provide readers with a good understanding of the state-of-the-art accessible structural level, characteristic features, and future potentials of these types of compounds. The major target audience of this monograph include Ph.D. students and researchers who have just begun their careers, who are seeking novel research directions, ideas, and inspiration. Among the diverse examples of synthetic molecular sequences referred to in the monograph, experienced experts can also find work that is informative and relevant to their own research, making the book worthwhile reading for these specialists.




Handbook of Conducting Polymers, Fourth Edition - 2 Volume Set


Book Description

In the last 10 years there have been major advances in fundamental understanding and applications and a vast portfolio of new polymer structures with unique and tailored properties was developed. Work moved from a chemical repeat unit structure to one more based on structural control, new polymerization methodologies, properties, processing, and applications. The 4th Edition takes this into account and will be completely rewritten and reorganized, focusing on spin coating, spray coating, blade/slot die coating, layer-by-layer assembly, and fiber spinning methods; property characterizations of redox, interfacial, electrical, and optical phenomena; and commercial applications.




Complex Macromolecular Architectures


Book Description

The field of CMA (complex macromolecular architecture) stands at the cutting edge of materials science, and has been a locus of intense research activity in recent years. This book gives an extensive description of the synthesis, characterization, and self-assembly of recently-developed advanced architectural materials with a number of potential applications. The architectural polymers, including bio-conjugated hybrid polymers with poly(amino acid)s and gluco-polymers, star-branched and dendrimer-like hyperbranched polymers, cyclic polymers, dendrigraft polymers, rod-coil and helix-coil block copolymers, are introduced chapter by chapter in the book. In particular, the book also emphasizes the topic of synthetic breakthroughs by living/controlled polymerization since 2000. Furthermore, renowned authors contribute on special topics such as helical polyisocyanates, metallopolymers, stereospecific polymers, hydrogen-bonded supramolecular polymers, conjugated polymers, and polyrotaxanes, which have attracted considerable interest as novel polymer materials with potential future applications. In addition, recent advances in reactive blending achieved with well-defined end-functionalized polymers are discussed from an industrial point of view. Topics on polymer-based nanotechnologies, including self-assembled architectures and suprastructures, nano-structured materials and devices, nanofabrication, surface nanostructures, and their AFM imaging analysis of hetero-phased polymers are also included. Provides comprehensive coverage of recently developed advanced architectural materials Covers hot new areas such as: click chemistry; chain walking; polyhomologation; ADMET Edited by highly regarded scientists in the field Contains contributions from 26 leading experts from Europe, North America, and Asia Researchers in academia and industry specializing in polymer chemistry will find this book to be an ideal survey of the most recent advances in the area. The book is also suitable as supplementary reading for students enrolled in Polymer Synthetic Chemistry, Polymer Synthesis, Polymer Design, Advanced Polymer Chemistry, Soft Matter Science, and Materials Science courses. Color versions of selected figures can be found at www.wiley.com/go/hadjichristidis




Solution-Processable Components for Organic Electronic Devices


Book Description

Provides first-hand insights into advanced fabrication techniques for solution processable organic electronics materials and devices The field of printable organic electronics has emerged as a technology which plays a major role in materials science research and development. Printable organic electronics soon compete with, and for specific applications can even outpace, conventional semiconductor devices in terms of performance, cost, and versatility. Printing techniques allow for large-scale fabrication of organic electronic components and functional devices for use as wearable electronics, health-care sensors, Internet of Things, monitoring of environment pollution and many others, yet-to-be-conceived applications. The first part of Solution-Processable Components for Organic Electronic Devices covers the synthesis of: soluble conjugated polymers; solution-processable nanoparticles of inorganic semiconductors; high-k nanoparticles by means of controlled radical polymerization; advanced blending techniques yielding novel materials with extraordinary properties. The book also discusses photogeneration of charge carriers in nanostructured bulk heterojunctions and charge carrier transport in multicomponent materials such as composites and nanocomposites as well as photovoltaic devices modelling. The second part of the book is devoted to organic electronic devices, such as field effect transistors, light emitting diodes, photovoltaics, photodiodes and electronic memory devices which can be produced by solution-based methods, including printing and roll-to-roll manufacturing. The book provides in-depth knowledge for experienced researchers and for those entering the field. It comprises 12 chapters focused on: ? novel organic electronics components synthesis and solution-based processing techniques ? advanced analysis of mechanisms governing charge carrier generation and transport in organic semiconductors and devices ? fabrication techniques and characterization methods of organic electronic devices Providing coverage of the state of the art of organic electronics, Solution-Processable Components for Organic Electronic Devices is an excellent book for materials scientists, applied physicists, engineering scientists, and those working in the electronics industry.