Synthesis, Characterization and Toxicity of Nanoparticles for Real World Applications


Book Description

Nanotechnology involves the synthesis and characterization of materials at the atomic, molecular and macromolecular scales, which results in a controlled manipulation of structures and devices that have at least one dimension that is approximately 1-100 nm in length. Objects at this scale, referred to as "nanoparticles" (NPs), exhibit physical properties differing from that of their bulk or micron scale counterparts. Unique properties such as small size, improved solubility, surface tailorability and large surface-to-volume ratio open up many research and application avenues for the materials scientist, the biologist and the engineer. These novel properties enable cross-disciplinary researchers the opportunity to improve existing products and to design and develop new products. The primary aim of this work was to design studies and formulate methodologies that offer valuable insight into the complexities that are often encountered with understanding environmental/human health impacts of a nanotechnology. This dissertation investigates two scenarios of a nanotechnological application. First, a current nanotechnology-based consumer application was considered. Specifically, the incorporation of titanium dioxide NPs into paints and lacquers was studied. A valuable way to gather information critical to the development of safe nanomaterial-containing consumer products is by employing a product life cycle approach. The primary focus here was to formulate methodologies to produce nano-enabled coatings in-house and assess the impacts/benefits of a nanotechnological application that is currently in the marketplace using a life cycle approach. Material characterization and toxicological evaluations of NPs in their pristine and end-of-life stages were assessed. Next, a potential nanotechnological application was explored. Specifically, the modification of silver NPs for insect vector control was investigated. The research developed here was the first of its kind in engineering a novel silver NP-pesticide conjugate. The efficacy of the newly developed conjugate and the cellular effects in model cell culture systems were evaluated. The findings of this work will provide a useful initial framework in prioritizing future nanotechnological research needs and have a significant impact on material scientists, toxicologists and engineers alike. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/152483




Nanoparticle Toxicity and Compatibility


Book Description

The book focuses on the interplay between nanoparticles and biological systems. Topics covered include the synthesis, characterization, and application of nanomaterials in tissue engineering; the interaction of nanoparticles with macromolecules; biomedical and food science applications; the cardiovascular toxicity of nanoparticles; colon targeted nano drug delivery systems; the biocompatibility and immunogenicity of nanoparticles; plasmon-enhanced biosensing applications; strategies for enhancing the biocompatibility of nanoparticles; the environmental impact of nanoparticles; as well as the intricate dynamics between nanoparticles and living organisms. Keywords: Tissue Engineering, Cardiovascular Toxicity, Drug Delivery Systems, Plasmon-Enhanced Biosensing, Biocompatibility of Nanoparticles, Ecotoxicology of Nanoparticles, Bioinspired Nanosynthesis, Hepatotoxicity, Nano Drug Delivery, Nanofabrication, Nanorobots, Plasmonics, Probiotics, Protein.




Green Synthesis, Characterization and Applications of Nanoparticles


Book Description

Green Synthesis, Characterization and Applications of Nanoparticles shows how eco-friendly nanoparticles are engineered and used. In particular, metal nanoparticles, metal oxide nanoparticles and other categories of nanoparticles are discussed. The book outlines a range of methodologies and explores the appropriate use of each. Characterization methods include spectroscopic, microscopic and diffraction methods, but magnetic resonance methods are also included as they can be used to understand the mechanism of nanoparticle synthesis using organisms. Applications covered include targeted drug delivery, water purification and hydrogen generation. This is an important research resource for those wishing to learn more about how eco-efficient nanoparticles can best be used. Theoretical details and mathematical derivations are kept to a necessary minimum to suit the need of interdisciplinary audiences and those who may be relatively new to the field. Explores recent trends in growth, characterization, properties and applications of nanoparticles Gives readers an understanding on how they are applied through the use of case studies and examples Assesses the advantages and disadvantages of a variety of synthesis and characterization techniques for green nanoparticles in different situations







Engineered Nanoparticles and the Environment


Book Description

Details the source, release, exposure, adsorption, aggregation, bioavailability, transport, transformation, and modeling of engineered nanoparticles found in many common products and applications Covers synthesis, environmental application, detection, and characterization of engineered nanoparticles Details the toxicity and risk assessment of engineered nanoparticles Includes topics on the transport, transformation, and modeling of engineered nanoparticles Presents the latest developments and knowledge of engineered nanoparticles Written by world leading experts from prestigious universities and companies




Synthesis and Applications of Nanoparticles


Book Description

This book provides thorough information on various nanomaterials, techniques for their synthesis and characterization, and examines their agricultural, environmental, biomedical, and clinical applications. The initial part of the book presents different nanomaterials; covers various physical, chemical, and biological methods for their synthesis; and reviews techniques to characterize their physicochemical and biological properties. Subsequently, the chapters of the book focus on the innovative applications of nanomaterials in disease diagnosis, tissue engineering, regenerative medicine, and cancer therapy. It also explores the green biosynthesis of nanomaterials and highlights their biological applications. Towards the end, the book examines the toxicity and biocompatibility of various nanomaterials. It aims to serve as a resource guide for researchers and biomedical clinicians working with nanomaterials.




Nanomaterials


Book Description

In the last decade, nanomaterials have become a double-edged sword. On one hand, nanomaterials have proven their limitless potential not only for technological applications, but also for medical ones. On the other hand, the increasing use of these nanomaterials has raised concerns regarding their safety for environmental and human health, due to their potential toxicity. The toxic effects of nanomaterials depend on their type, surface geometry, diameter, length and function. This book intends to provide a comprehensive evidence-based overview of nanomaterial toxicity, from their synthesis and characterization, environmental impact, tests to assess their toxicity in vitro and in vivo, ways to modulate their impact on living organisms, to their beneficial use in biomedical applications.




Toxicology of Nanoparticles: Insights from Drosophila


Book Description

This book offers an unparalleled source of information on in vivo assessment of nanoparticle toxicity by using Drosophila as a model organism. Nanoparticles have emerged as an useful tool for wide variety of biomedical, cosmetics, and industrial applications. However, our understanding of nanomaterial-mediated toxicity under in vivo condition remains limited. The book begins with a chapter on synthesis and characterization of nanoparticles used for various biological, medical and commercial purposes. The rest of the chapters deal with the impact of nanoparticles on different biological aspects like behavior, physiology and metabolic homoeostasis using Drosophila as a model organism. Lastly, the book summarizes how proper characterization and evaluation of safe dosage of nanoparticles can be a boon if incorporated in consumer goods and for biomedical applications. Overall, the book pursues an interdisciplinary approach by connecting nanotechnology and biology from various angles using Drosophila as a model system, so as to develop more efficient, safe and effective use of nanoparticles for human beings.




Nanotechnology


Book Description

Nanotechnology: Advances and Real-Life Applications offers a comprehensive reference text about advanced concepts and applications in the field of nanotechnology. The text – written by researchers practicing in the field – presents a detailed discussion of key concepts including nanomaterials and their synthesis, fabrication and characterization of nanomaterials, carbon-based nanomaterials, nano-bio interface, and nanoelectronics. The applications of nanotechnology in the fields of renewable energy, medicine and agriculture are each covered in a dedicated chapter. The text will be invaluable for senior undergraduate and graduate students in the fields of electrical engineering, electronics engineering, nanotechnology and nanoscience. Dr. Cherry Bhargava is an Associate Professor and Head, VLSI domain, at the School of Electrical and Electronics Engineering of Lovely Professional University, Jalandhar, India. Dr. Amit Sachdeva is an Associate Professor at Lovely Professional University, Jalandhar, India.




Green Synthesis of Nanomaterials


Book Description

Nanomaterials possess astonishing physical and chemical properties. They play a key role in the development of novel and effective drugs, catalysts, sensors, and pesticides, to cite just a few examples. Notably, the synthesis of nanomaterials is usually achieved with chemical and physical methods needing the use of extremely toxic chemicals or high-energy inputs. To move towards more eco-friendly processes, researchers have recently focused on so-called “green synthesis”, where microbial, animal-, and plant-borne compounds can be used as cheap reducing and stabilizing agents to fabricate nanomaterials. Green synthesis routes are cheap, environmentally sustainable, and can lead to the fabrication of nano-objects with controlled sizes and shapes—two key features determining their bioactivity. However, real-world applications of green-fabricated nanomaterials are largely unexplored. Besides, what do we really know about their non-target toxicity? Which are their main modes of action? What is their possible fate in the environment? In this framework, the present Special Issue will include articles by expert authorities on nanomaterials synthesis and applications. Special emphasis will be placed on their impact on the environment and long-term toxicity.