Synthesis of Modular Pseudopeptide Ligand Systems for Modeling Enzyme Active Sites


Book Description

Metalloenzymes make up approximately one third of all enzymes and catalyze a diverse range of reactions. Such enzymes include matrix metalloproteinases, carbonic anhydride, and the mononuclear non-heme iron(II) enzymes; all of which have been modeled using small molecular complexes to understand the structure and function. Symmetrical tripodal pseudopeptides were previously synthesized to model these enzymes, but they produced undesired complex polymers. Therefore, tert-butyl THB, a ligand with three tert-butyl histamines, was synthesized to produce a 1:1 metal/ligand binding mode. The tert-butyl THB ligand was confirmed by ESI-MS+ and NMR. In parallel, in order to accurately model more diverse active sites, such as those that contain two-histidines and one cysteine, two cysteines and one histidine, or two histidines and one carboxylate group, asymmetric ligands were synthesized which used the actual amino acid contained in the enzyme active site. These asymmetric ligands were partially synthesized and characterized, but require further development.




Fragment-based Approaches in Drug Discovery


Book Description

This first systematic summary of the impact of fragment-based approaches on the drug development process provides essential information that was previously unavailable. Adopting a practice-oriented approach, this represents a book by professionals for professionals, tailor-made for drug developers in the pharma and biotech sector who need to keep up-to-date on the latest technologies and strategies in pharmaceutical ligand design. The book is clearly divided into three sections on ligand design, spectroscopic techniques, and screening and drug discovery, backed by numerous case studies.




Anion Receptor Chemistry


Book Description

Anion recognition plays a critical role in a range of biological processes, and a variety of receptors and carriers can be found throughout the natural world. Chemists working in the area of supramolecular chemistry have created a range of anion receptors, drawing inspiration from nature as well as their own inventive processes. This book traces the origins of anion recognition chemistry as a unique sub-field in supramolecular chemistry while illustrating the basic approaches currently being used to effect receptor design. The combination of biological overview and summary of current synthetic approaches provides a coverage that is both comprehensive and comprehensible. First, the authors detail the key design motifs that have been used to generate synthetic receptors and which are likely to provide the basis for further developments. They also highlight briefly some of the features that are present in naturally occurring anion recognition and transport systems and summarise the applications of anion recognition chemistry. Providing as it does a detailed review for practitioners in the field and a concise introduction to the topic for newcomers, Anion Receptor Chemistry reflects the current state of the art. Fully referenced and illustrated in colour, it is a welcome addition to the literature.




Fragment-Based Drug Discovery


Book Description

Fragment-based drug discovery is a rapidly evolving area of research, which has recently seen new applications in areas such as epigenetics, GPCRs and the identification of novel allosteric binding pockets. The first fragment-derived drug was recently approved for the treatment of melanoma. It is hoped that this approval is just the beginning of the many drugs yet to be discovered using this fascinating technique. This book is written from a Chemist's perspective and comprehensively assesses the impact of fragment-based drug discovery on a wide variety of areas of medicinal chemistry. It will prove to be an invaluable resource for medicinal chemists working in academia and industry, as well as anyone interested in novel drug discovery techniques.




Catalytic Asymmetric Synthesis


Book Description

Catalytic Asymmetric Synthesis Seminal text presenting detailed accounts of the most important catalytic asymmetric reactions known today This book covers the preparation of enantiomerically pure or enriched chemical compounds by use of chiral catalyst molecules. While reviewing the most important catalytic methods for asymmetric organic synthesis, this book highlights the most important and recent developments in catalytic asymmetric synthesis. Edited by two well-qualified experts, sample topics covered in the work include: Metal catalysis, organocatalysis, photoredox catalysis, enzyme catalysis C–H bond functionalization reactions Carbon–carbon bond formation reactions, carbon–halogen bond formation reactions, hydrogenations, polymerizations, flow reactions Axially chiral compounds Retaining the best of its predecessors but now thoroughly up to date with the important and recent developments in catalytic asymmetric synthesis, the 4th edition of Catalytic Asymmetric Synthesis serves as an excellent desktop reference and text for researchers and students, from upper-level undergraduates all the way to experienced professionals in industry or academia.




The Origins of Life


Book Description

Life arose on Earth more than three billion years ago. How the first self-replicating systems emerged from prebiotic chemistry and evolved into primitive cell-like entities is an area of intense research, spanning molecular and cellular biology, organic chemistry, cosmology, geology, and atmospheric science. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology provides a comprehensive account of the environment of the early Earth and the mechanisms by which the organic molecules present may have self-assembled to form replicating material such as RNA and other polymers. The contributors examine the energetic requirements for this process and focus in particular on the essential role of semi-permeable compartments in containment of primitive genetic systems. Also covered in the book are new synthetic approaches for fabricating cellular systems, the potentially extraterrestrial origin of life's building blocks, and the possibility that life once existed on Mars. Comprising five sections Setting the Stage, Components of First Life, Primitive Systems, First Polymers, and Transition to a Microbial World it is a vital reference for all scientists interested in the origin of life on Earth and the likelihood that it has arisen on other planets




Glass Transition and Phase Transitions in Food and Biological Materials


Book Description

Glass and State Transitions in Food and Biological Materials describes how glass transition has been applied to food micro-structure, food processing, product development, storage studies, packaging development and other areas. This book has been structured so that readers can initially grasp the basic principles and instrumentation, before moving through the various applications. In summary, the book will provide the “missing link” between food science and material science/polymer engineering. This will allow food scientists to better understand the concept and applications of thermal properties.




Peptide Libraries


Book Description

This volume provides an overview of modern and emerging methods for production, analysis, and utility of peptide libraries. Chapter focus on methods and techniques for synthesis, genetic expression, hybrid synthesis-expression, examples of modern utility of these libraries, de novo discovery of reactions, hybrid organic-inorganic materials and, emerging tools for the analysis of these libraries by method of genetic selection and next-generation sequencing. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Peptide Libraries: Methods and Protocols seeks to serve both professionals and novices with its well-honed methodologies.




Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy


Book Description

Ninth volume of a 40 volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.




Nanoparticle–Protein Corona


Book Description

Nanoparticles have numerous biomedical applications including drug delivery, bone implants and imaging. A protein corona is formed when proteins existing in a biological system cover the nanoparticle surface. The formation of a nanoparticle–protein corona, changes the behaviour of the nanoparticle, resulting in new biological characteristics and influencing the circulation lifetime, accumulation, toxicity, cellular uptake and agglomeration. This book provides a detailed understanding of nanoparticle–protein corona formation, its biological significance and the factors that govern the formation of coronas. It also explains the impact of nanoparticle–protein interactions on biological assays, ecotoxicity studies and proteomics research. It will be of interest to researchers studying the application of nanoparticles as well as toxicologists and pharmaceutical chemists.