System Dynamics and Response


Book Description

As engineering systems become more increasingly interdisciplinary, knowledge of both mechanical and electrical systems has become an asset within the field of engineering. All engineers should have general facility with modeling of dynamic systems and determining their response and it is the objective of this book to provide a framework for that understanding. The study material is presented in four distinct parts; the mathematical modeling of dynamic systems, the mathematical solution of the differential equations and integro differential equations obtained during the modeling process, the response of dynamic systems, and an introduction to feedback control systems and their analysis. An Appendix is provided with a short introduction to MATLAB as it is frequently used within the text as a computational tool, a programming tool, and a graphical tool. SIMULINK, a MATLAB based simulation and modeling tool, is discussed in chapters where the development of models use either the transfer function approach or the state-space method.




System Dynamics


Book Description




System Dynamics for Engineering Students


Book Description

Engineering system dynamics focuses on deriving mathematical models based on simplified physical representations of actual systems, such as mechanical, electrical, fluid, or thermal, and on solving these models for analysis or design purposes. System Dynamics for Engineering Students: Concepts and Applications features a classical approach to system dynamics and is designed to be utilized as a one-semester system dynamics text for upper-level undergraduate students with emphasis on mechanical, aerospace, or electrical engineering. It is the first system dynamics textbook to include examples from compliant (flexible) mechanisms and micro/nano electromechanical systems (MEMS/NEMS). This new second edition has been updated to provide more balance between analytical and computational approaches; introduces additional in-text coverage of Controls; and includes numerous fully solved examples and exercises. - Features a more balanced treatment of mechanical, electrical, fluid, and thermal systems than other texts - Introduces examples from compliant (flexible) mechanisms and MEMS/NEMS - Includes a chapter on coupled-field systems - Incorporates MATLAB® and Simulink® computational software tools throughout the book - Supplements the text with extensive instructor support available online: instructor's solution manual, image bank, and PowerPoint lecture slides NEW FOR THE SECOND EDITION - Provides more balance between analytical and computational approaches, including integration of Lagrangian equations as another modelling technique of dynamic systems - Includes additional in-text coverage of Controls, to meet the needs of schools that cover both controls and system dynamics in the course - Features a broader range of applications, including additional applications in pneumatic and hydraulic systems, and new applications in aerospace, automotive, and bioengineering systems, making the book even more appealing to mechanical engineers - Updates include new and revised examples and end-of-chapter exercises with a wider variety of engineering applications




System Dynamics


Book Description

William Palm's System Dynamics is a major new entry in this course offered for Mechanical, Aerospace and Electrical Engineering students, as well as practicing engineers. Palm's text is notable for having the strongest coverage of computational software and system simulation of any available book. MATLAB is introduced in Chapter 1, and every subsequent chapter has a MATLAB Applications section. No previous experience with MATLAB is assumed; methods are carefully explained, and a detailed appendix outlines use of the program. M-files are provided on the accompanying Book Website for all users of the book. SIMULINK is introduced in Chapter 5, and used in subsequent chapters to demonstrate the use of system simulation techniques. This textbook also makes a point of using real-world systems, such as vehicle suspension systems and motion control systems, to illustrate textbook content.




System Dynamics


Book Description

This unique textbook takes the student from the initial steps in modeling a dynamic system through development of the mathematical models needed for feedback control. The generously-illustrated, student-friendly text focuses on fundamental theoretical development rather than the application of commercial software. Practical details of machine design are included to motivate the non-mathematically inclined student.




System Dynamics


Book Description

Addressing topics from system elements and simple first- and second-order systems to complex lumped- and distributed-parameter models of practical machines and processes, this work details the utility of systems dynamics for the analysis and design of mechanical, fluid, thermal and mixed engineering systems. It emphasizes digital simulation and integrates frequency-response methods throughout.;College or university bookshops may order five or more copies at a special student price, available on request.




Control System Dynamics


Book Description

A textbook for engineers on the basic techniques in the analysis and design of automatic control systems.




Business Dynamics: Systems Thinking and Modeling for a Complex World with CD-ROM


Book Description

Today’s leading authority on the subject of this text is the author, MIT Standish Professor of Management and Director of the System Dynamics Group, John D. Sterman. Sterman’s objective is to explain, in a true textbook format, what system dynamics is, and how it can be successfully applied to solve business and organizational problems. System dynamics is both a currently utilized approach to organizational problem solving at the professional level, and a field of study in business, engineering, and social and physical sciences.




Community Based System Dynamics


Book Description

Community Based System Dynamics introduces researchers and practitioners to the design and application of participatory systems modeling with diverse communities. The book bridges community- based participatory research methods and rigorous computational modeling approaches to understanding communities as complex systems. It emphasizes the importance of community involvement both to understand the underlying system and to aid in implementation. Comprehensive in its scope, the volume includes topics that span the entire process of participatory systems modeling, from the initial engagement and conceptualization of community issues to model building, analysis, and project evaluation. Community Based System Dynamics is a highly valuable resource for anyone interested in helping to advance social justice using system dynamics, community involvement, and group model building, and helping to make communities a better place.




System Dynamics and Mechanical Vibrations


Book Description

A comprehensive treatment of "linear systems analysis" applied to dynamic systems as an approach to interdisciplinary system design beyond the related area of electrical engineering. The text gives an interpretation of mechanical vibrations based on the theory of dynamic systems, aiming to bridge the gap between existing theoretical methods in different engineering disciplines and to enable advanced students or professionals to model dynamic and vibrating systems with reference to communication and control processes. Emphasizing the theory it presents a balanced coverage of analytical principles and applications to vibrations with regard to mechatronic problems.