System Dynamics for Complex Problems in Pavement Engineering


Book Description

Increasingly, segments of the civil infrastructure are considered to be parts of larger systems, which requires a systems approach for a fuller and proper understanding of and solutions to problems. Unfortunately, the subject of a system or a systems approach is barely covered in a standard civil and environmental engineering curriculum. Most, if not all, civil engineering problems involve interdependency, and hence segmented approaches of learning one individual topic at a time make it difficult for students to learn, understand, and apply rational concepts for the design, construction, and maintenance of larger infrastructure components. System Dynamics for Complex Problems in Pavement Engineering presents an introduction to a systems approach to help readers evolve and develop their capabilities of learning, communicating, and researching through system dynamics modeling and experimentation. Furthermore, it helps students appreciate the need for systems thinking in modeling, analyzing, and proposing solutions for multidisciplinary problems in pavement engineering.







System Dynamics for Engineering Students


Book Description

Engineering system dynamics focuses on deriving mathematical models based on simplified physical representations of actual systems, such as mechanical, electrical, fluid, or thermal, and on solving these models for analysis or design purposes. System Dynamics for Engineering Students: Concepts and Applications features a classical approach to system dynamics and is designed to be utilized as a one-semester system dynamics text for upper-level undergraduate students with emphasis on mechanical, aerospace, or electrical engineering. It is the first system dynamics textbook to include examples from compliant (flexible) mechanisms and micro/nano electromechanical systems (MEMS/NEMS). This new second edition has been updated to provide more balance between analytical and computational approaches; introduces additional in-text coverage of Controls; and includes numerous fully solved examples and exercises. - Features a more balanced treatment of mechanical, electrical, fluid, and thermal systems than other texts - Introduces examples from compliant (flexible) mechanisms and MEMS/NEMS - Includes a chapter on coupled-field systems - Incorporates MATLABĀ® and SimulinkĀ® computational software tools throughout the book - Supplements the text with extensive instructor support available online: instructor's solution manual, image bank, and PowerPoint lecture slides NEW FOR THE SECOND EDITION - Provides more balance between analytical and computational approaches, including integration of Lagrangian equations as another modelling technique of dynamic systems - Includes additional in-text coverage of Controls, to meet the needs of schools that cover both controls and system dynamics in the course - Features a broader range of applications, including additional applications in pneumatic and hydraulic systems, and new applications in aerospace, automotive, and bioengineering systems, making the book even more appealing to mechanical engineers - Updates include new and revised examples and end-of-chapter exercises with a wider variety of engineering applications




System Dynamics and Control with Bond Graph Modeling


Book Description

Written by a professor with extensive teaching experience, System Dynamics and Control with Bond Graph Modeling treats system dynamics from a bond graph perspective. Using an approach that combines bond graph concepts and traditional approaches, the author presents an integrated approach to system dynamics and automatic controls. The textbook guide
















Vehicle-road Interaction


Book Description

Proceedings of a conference held in Santa Barbara, California, in May 1992. Topics include simulation and analysis of trucks using the program BAMMS, predicting vertical dynamic tire forces of heavy trucks, factors affecting the design and use of the Texas Mobile Load Simulator, traction tests on an




Sustainability Issues in Civil Engineering


Book Description

This compilation on sustainability issues in civil engineering comprises contributions from international experts who have been working in the area of sustainability in civil engineering. Many of the contributions have been presented as keynote lectures at the International Conference on Sustainable Civil Infrastructure (ICSCI) held in Hyderabad, India. The book has been divided into core themes of Sustainable Transportation Systems, Sustainable Geosystems, Sustainable Environmental and Water Resources and Sustainable Structural Systems. Use of sustainability principles in engineering has become an important component of the process of design and in this context, design and analysis approaches in civil engineering are being reexamined to incorporate the principles of sustainable designs and construction in practice. Developing economies are on the threshold of rapid infrastructure growth and there is a need to compile the developments in various branches of civil engineering and highlight the issues. It is this need that prompted the composition of this book. The contents of this book will be useful to students, professionals, and researchers working on sustainability related problems in civil engineering. The book also provides a perspective on sustainability for practicing civil engineers who are not directly researching the problems but are affected by the concerns in the course of their profession. The book can also serve to highlight to policy makers and governing bodies the need to have a mandate for sustainable infrastructural development.