System Modeling and Response
Author : Ernest O. Doebelin
Publisher : ernest otto doebelin
Page : 624 pages
File Size : 10,20 MB
Release : 1980
Category : Technology & Engineering
ISBN :
Author : Ernest O. Doebelin
Publisher : ernest otto doebelin
Page : 624 pages
File Size : 10,20 MB
Release : 1980
Category : Technology & Engineering
ISBN :
Author : Jorge Angeles
Publisher : Springer Science & Business Media
Page : 578 pages
File Size : 22,43 MB
Release : 2011-09-15
Category : Technology & Engineering
ISBN : 1441910263
Dynamic Response of Linear Mechanical Systems: Modeling, Analysis and Simulation can be utilized for a variety of courses, including junior and senior-level vibration and linear mechanical analysis courses. The author connects, by means of a rigorous, yet intuitive approach, the theory of vibration with the more general theory of systems. The book features: A seven-step modeling technique that helps structure the rather unstructured process of mechanical-system modeling A system-theoretic approach to deriving the time response of the linear mathematical models of mechanical systems The modal analysis and the time response of two-degree-of-freedom systems—the first step on the long way to the more elaborate study of multi-degree-of-freedom systems—using the Mohr circle Simple, yet powerful simulation algorithms that exploit the linearity of the system for both single- and multi-degree-of-freedom systems Examples and exercises that rely on modern computational toolboxes for both numerical and symbolic computations as well as a Solutions Manual for instructors, with complete solutions of a sample of end-of-chapter exercises Chapters 3 and 7, on simulation, include in each “Exercises” section a set of miniprojects that require code-writing to implement the algorithms developed in these chapters
Author : Craig A. Kluever
Publisher : Wiley Global Education
Page : 481 pages
File Size : 39,42 MB
Release : 2019-12-24
Category : Technology & Engineering
ISBN : 1119601983
The simulation of complex, integrated engineering systems is a core tool in industry which has been greatly enhanced by the MATLAB® and Simulink® software programs. The second edition of Dynamic Systems: Modeling, Simulation, and Control teaches engineering students how to leverage powerful simulation environments to analyze complex systems. Designed for introductory courses in dynamic systems and control, this textbook emphasizes practical applications through numerous case studies—derived from top-level engineering from the AMSE Journal of Dynamic Systems. Comprehensive yet concise chapters introduce fundamental concepts while demonstrating physical engineering applications. Aligning with current industry practice, the text covers essential topics such as analysis, design, and control of physical engineering systems, often composed of interacting mechanical, electrical, and fluid subsystem components. Major topics include mathematical modeling, system-response analysis, and feedback control systems. A wide variety of end-of-chapter problems—including conceptual problems, MATLAB® problems, and Engineering Application problems—help students understand and perform numerical simulations for integrated systems.
Author : Robert L. Woods
Publisher : Pearson
Page : 552 pages
File Size : 15,13 MB
Release : 1997
Category : Mathematics
ISBN :
Introduction to modeling and simulation - Models for dynamic systems and systems similarity - Modeling of engineering systems - Mechanical systems - Electrical systems - Fluid systems - Thermal systems - Mixed discipline systems - System dynamic response analysis - Frequency response - Time response and digital simulation - Engineering applications - System design and selection of components.
Author : Ernest Doebelin
Publisher : CRC Press
Page : 1560 pages
File Size : 39,96 MB
Release : 1998-02-10
Category : Technology & Engineering
ISBN : 9780824701260
Addressing topics from system elements and simple first- and second-order systems to complex lumped- and distributed-parameter models of practical machines and processes, this work details the utility of systems dynamics for the analysis and design of mechanical, fluid, thermal and mixed engineering systems. It emphasizes digital simulation and integrates frequency-response methods throughout.;College or university bookshops may order five or more copies at a special student price, available on request.
Author : Charles M. Close
Publisher :
Page : 708 pages
File Size : 23,41 MB
Release : 1993
Category : Mathematics
ISBN :
This text is intended for a first course in dynamic systems and is designed for use by sophomore and junior majors in all fields of engineering, but principally mechanical and electrical engineers. All engineers must understand how dynamic systems work and what responses can be expected from various physical systems.
Author : Karl Johan Åström
Publisher : Princeton University Press
Page : pages
File Size : 14,11 MB
Release : 2021-02-02
Category : Technology & Engineering
ISBN : 069121347X
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory
Author : Haim Shore
Publisher : World Scientific
Page : 458 pages
File Size : 33,24 MB
Release : 2005
Category : Technology & Engineering
ISBN : 9812561021
This book introduces a new approach, denoted RMM, for an empirical modeling of a response variation, relating to both systematic variation and random variation. In the book, the developer of RMM discusses the required properties of empirical modeling and evaluates how current approaches conform to these requirements. In addition, he explains the motivation for the development of the new methodology, introduces in detail the new approach and its estimation procedures, and shows how it may provide an excellent alternative to current approaches for empirical modeling (like Generalized Linear Modeling, GLM). The book also demonstrates that a myriad of current relational models, developed independently in various engineering and scientific disciplines, are in fact special cases of the RMM model, and so are many current statistical distributions, transformations and approximations.
Author : Charles M. Close
Publisher : John Wiley & Sons
Page : 592 pages
File Size : 23,81 MB
Release : 2001-08-20
Category : Technology & Engineering
ISBN : 0471394424
The third edition of Modeling and Anaysis of Dynamic Systems continues to present students with the methodology applicable to the modeling and analysis of a variety of dynamic systems, regardless of their physical origin. It includes detailed modeling of mechanical, electrical, electro-mechanical, thermal, and fluid systems. Models are developed in the form of state-variable equations, input-output differential equations, transfer functions, and block diagrams. The Laplace transform is used for analytical solutions. Computer solutions are based on MATLAB and Simulink. Examples include both linear and nonlinear systems. An introduction is given to the modeling and design tools for feedback control systems. The text offers considerable flexibility in the selection of material for a specific course. Students majoring in many different engineering disciplines have used the text. Such courses are frequently followed by control-system design courses in the various disciplines.
Author : Bohdan T. Kulakowski
Publisher : Cambridge University Press
Page : 502 pages
File Size : 45,94 MB
Release : 2014-04-30
Category : Technology & Engineering
ISBN : 9781107650442
This textbook is ideal for an undergraduate course in Engineering System Dynamics and Controls. It is intended to provide the reader with a thorough understanding of the process of creating mathematical (and computer-based) models of physical systems. The material is restricted to lumped parameter models, which are those models in which time is the only independent variable. It assumes a basic knowledge of engineering mechanics and ordinary differential equations. The new edition has expanded topical coverage and many more new examples and exercises.