System-on-Chip Test Architectures


Book Description

Modern electronics testing has a legacy of more than 40 years. The introduction of new technologies, especially nanometer technologies with 90nm or smaller geometry, has allowed the semiconductor industry to keep pace with the increased performance-capacity demands from consumers. As a result, semiconductor test costs have been growing steadily and typically amount to 40% of today's overall product cost. This book is a comprehensive guide to new VLSI Testing and Design-for-Testability techniques that will allow students, researchers, DFT practitioners, and VLSI designers to master quickly System-on-Chip Test architectures, for test debug and diagnosis of digital, memory, and analog/mixed-signal designs. - Emphasizes VLSI Test principles and Design for Testability architectures, with numerous illustrations/examples. - Most up-to-date coverage available, including Fault Tolerance, Low-Power Testing, Defect and Error Tolerance, Network-on-Chip (NOC) Testing, Software-Based Self-Testing, FPGA Testing, MEMS Testing, and System-In-Package (SIP) Testing, which are not yet available in any testing book. - Covers the entire spectrum of VLSI testing and DFT architectures, from digital and analog, to memory circuits, and fault diagnosis and self-repair from digital to memory circuits. - Discusses future nanotechnology test trends and challenges facing the nanometer design era; promising nanotechnology test techniques, including Quantum-Dots, Cellular Automata, Carbon-Nanotubes, and Hybrid Semiconductor/Nanowire/Molecular Computing. - Practical problems at the end of each chapter for students.




System-on-Chip for Real-Time Applications


Book Description

System-on-Chip for Real-Time Applications will be of interest to engineers, both in industry and academia, working in the area of SoC VLSI design and application. It will also be useful to graduate and undergraduate students in electrical and computer engineering and computer science. A selected set of papers from the 2nd International Workshop on Real-Time Applications were used to form the basis of this book. It is organized into the following chapters: -Introduction; -Design Reuse; -Modeling; -Architecture; -Design Techniques; -Memory; -Circuits; -Low Power; -Interconnect and Technology; -MEMS. System-on-Chip for Real-Time Applications contains many signal processing applications and will be of particular interest to those working in that community.




Design and Test Technology for Dependable Systems-on-chip


Book Description

"This book covers aspects of system design and efficient modelling, and also introduces various fault models and fault mechanisms associated with digital circuits integrated into System on Chip (SoC), Multi-Processor System-on Chip (MPSoC) or Network on Chip (NoC)"--




System-on-Chip Design with Arm® Cortex®-M Processors


Book Description

The Arm(R) Cortex(R)-M processors are already one of the most popular choices for loT and embedded applications. With Arm Flexible Access and DesignStart(TM), accessing Arm Cortex-M processor IP is fast, affordable, and easy. This book introduces all the key topics that system-on-chip (SoC) and FPGA designers need to know when integrating a Cortex-M processor into their design, including bus protocols, bus interconnect, and peripheral designs. Joseph Yiu is a distinguished Arm engineer who began designing SoCs back in 2000 and has been a leader in this field for nearly twenty years. Joseph's book takes an expert look at what SoC designers need to know when incorporating Cortex-M processors into their systems. He discusses the on-chip bus protocol specifications (AMBA, AHB, and APB), used by Arm processors and a wide range of on-chip digital components such as memory interfaces, peripherals, and debug components. Software development and advanced design considerations are also covered. The journey concludes with 'Putting the system together', a designer's eye view of a simple microcontroller-like design based on the Cortex-M3 processor (DesignStart) that uses the components that you will have learned to create.




VLSI Test Principles and Architectures


Book Description

This book is a comprehensive guide to new DFT methods that will show the readers how to design a testable and quality product, drive down test cost, improve product quality and yield, and speed up time-to-market and time-to-volume. - Most up-to-date coverage of design for testability. - Coverage of industry practices commonly found in commercial DFT tools but not discussed in other books. - Numerous, practical examples in each chapter illustrating basic VLSI test principles and DFT architectures.




Embedded Memory Design for Multi-Core and Systems on Chip


Book Description

This book describes the various tradeoffs systems designers face when designing embedded memory. Readers designing multi-core systems and systems on chip will benefit from the discussion of different topics from memory architecture, array organization, circuit design techniques and design for test. The presentation enables a multi-disciplinary approach to chip design, which bridges the gap between the architecture level and circuit level, in order to address yield, reliability and power-related issues for embedded memory.




On-Chip Communication Architectures


Book Description

Over the past decade, system-on-chip (SoC) designs have evolved to address the ever increasing complexity of applications, fueled by the era of digital convergence. Improvements in process technology have effectively shrunk board-level components so they can be integrated on a single chip. New on-chip communication architectures have been designed to support all inter-component communication in a SoC design. These communication architecture fabrics have a critical impact on the power consumption, performance, cost and design cycle time of modern SoC designs. As application complexity strains the communication backbone of SoC designs, academic and industrial R&D efforts and dollars are increasingly focused on communication architecture design. On-Chip Communication Architecures is a comprehensive reference on concepts, research and trends in on-chip communication architecture design. It will provide readers with a comprehensive survey, not available elsewhere, of all current standards for on-chip communication architectures. - A definitive guide to on-chip communication architectures, explaining key concepts, surveying research efforts and predicting future trends - Detailed analysis of all popular standards for on-chip communication architectures - Comprehensive survey of all research on communication architectures, covering a wide range of topics relevant to this area, spanning the past several years, and up to date with the most current research efforts - Future trends that with have a significant impact on research and design of communication architectures over the next several years




Essential Issues in SOC Design


Book Description

This book originated from a workshop held at the DATE 2005 conference, namely Designing Complex SOCs. State-of-the-art in issues related to System-on-Chip (SoC) design by leading experts in the fields, it covers IP development, verification, integration, chip implementation, testing and software. It contains valuable academic and industrial examples for those involved with the design of complex SOCs.




3D Integration for NoC-based SoC Architectures


Book Description

This book presents the research challenges that are due to the introduction of the 3rd dimension in chips for researchers and covers the whole architectural design approach for 3D-SoCs. Nowadays the 3D-Integration technologies, 3D-Design techniques, and 3D-Architectures are emerging as interesting, truly hot, broad topics. The present book gathers the recent advances in the whole domain by renowned experts in the field to build a comprehensive and consistent book around the hot topics of three-dimensional architectures and micro-architectures. This book includes contributions from high level international teams working in this field.




Digital System Test and Testable Design


Book Description

This book is about digital system testing and testable design. The concepts of testing and testability are treated together with digital design practices and methodologies. The book uses Verilog models and testbenches for implementing and explaining fault simulation and test generation algorithms. Extensive use of Verilog and Verilog PLI for test applications is what distinguishes this book from other test and testability books. Verilog eliminates ambiguities in test algorithms and BIST and DFT hardware architectures, and it clearly describes the architecture of the testability hardware and its test sessions. Describing many of the on-chip decompression algorithms in Verilog helps to evaluate these algorithms in terms of hardware overhead and timing, and thus feasibility of using them for System-on-Chip designs. Extensive use of testbenches and testbench development techniques is another unique feature of this book. Using PLI in developing testbenches and virtual testers provides a powerful programming tool, interfaced with hardware described in Verilog. This mixed hardware/software environment facilitates description of complex test programs and test strategies.