Systems Biological Approaches in Infectious Diseases


Book Description

This book brings together the various fields of functional genomics and systems biology that provide information on metabolic function. There is special emphasis on the identification of drug targets. The book includes practical examples from the various "omic" sciences as well as theoretical examples of how integrated knowledge of these sciences can be applied to drug discovery. It is of interest to researchers in the pharmaceutical drug discovery environment.




Systems Biology Approaches in Infectious Diseases


Book Description

Epidemiological and genetic studies showed that severity of invasive group A streptococcal (GAS) sepsis is influenced by interactions of genetic factors of both bacteria and host. Systems biology approaches presented shed light on host mechanisms of differential response to invasive GAS sepsis. Using genome-wide association studies, we found association between differential susceptibility to GAS sepsis and quantitative trait loci (QTL) on mouse Chr 2 and X. Genes within these QTLs were prioritized based on bioinformatics and qPCR to explore mechanisms of host differential susceptibility. Collectively, data suggested that prostaglandin and interleukin 1 signaling pathways act as key modulators of a network of genes involved in immune responses to GAS sepsis. In addition, genome-wide transcriptome studies showed that pathways involving activation of interleukin 10 production and signaling are likely to be associated with resistance to infection. Despite differences between mouse and human immune systems, systems biology approaches results using mice corresponded well with results obtained from human studies demonstrating the power of this approach and better translation to humans.










Systems Biology


Book Description

First, systems biology is an inter-disciplinary approach, requiring the combined talents of biologists, mathematicians, and computer scientists. Second, systems biology is holistic, with the goal of obtaining a comprehensive understanding of the workings of biological systems. This is achieved through the acquisition of massive amounts of data by high-throughput technologies—oligonucleotide microarrays, mass spectrometry, and next-generation sequencing—and the analysis of this data through sophisticated mathematical algorithms. It is perhaps the use of mathematics, to integrate abundant and diverse types of data and to generate models of interconnected molecular networks, that best characterizes systems biology.




Computational Systems Biology


Book Description







The Science and Applications of Synthetic and Systems Biology


Book Description

Many potential applications of synthetic and systems biology are relevant to the challenges associated with the detection, surveillance, and responses to emerging and re-emerging infectious diseases. On March 14 and 15, 2011, the Institute of Medicine's (IOM's) Forum on Microbial Threats convened a public workshop in Washington, DC, to explore the current state of the science of synthetic biology, including its dependency on systems biology; discussed the different approaches that scientists are taking to engineer, or reengineer, biological systems; and discussed how the tools and approaches of synthetic and systems biology were being applied to mitigate the risks associated with emerging infectious diseases. The Science and Applications of Synthetic and Systems Biology is organized into sections as a topic-by-topic distillation of the presentations and discussions that took place at the workshop. Its purpose is to present information from relevant experience, to delineate a range of pivotal issues and their respective challenges, and to offer differing perspectives on the topic as discussed and described by the workshop participants. This report also includes a collection of individually authored papers and commentary.




Treating Infectious Diseases in a Microbial World


Book Description

Humans coexist with millions of harmless microorganisms, but emerging diseases, resistance to antibiotics, and the threat of bioterrorism are forcing scientists to look for new ways to confront the microbes that do pose a danger. This report identifies innovative approaches to the development of antimicrobial drugs and vaccines based on a greater understanding of how the human immune system interacts with both good and bad microbes. The report concludes that the development of a single superdrug to fight all infectious agents is unrealistic.