Systems Engineering for Aerospace


Book Description

Systems Engineering for Aerospace: A Practical Approach applies insights gained from systems engineering to real-world industry problems. The book describes how to measure and manage an aircraft program from start to finish. It helps readers determine input, process and output requirements, from planning to testing. Readers will learn how to simplify design through production and acquire a lifecycle strategy using Integrated Master Plan/Schedule (IMP/IMS). The book directly addresses improved aircraft system design tools and processes which, when implemented, contribute to simpler, lower cost and safer airplanes. The book helps the reader understand how a product should be designed, identifying the customer's requirements, considering all possible components of an integrated master plan, and executing according to the plan with an integrated master schedule. The author demonstrates that systems engineering offers a means for aircraft companies to become more effective and profitable. - Describes how to measure and manage an aircraft program - Instructs on how to determine essential input, process and output requirements - Teaches how to simplify the design process, thus allowing for increased profit - Provides a lifecycle strategy using Integrated Master Plan/Schedule (IMP/IMS) - Identifies cost driver influences on people, products and processes




Aircraft Design


Book Description

A comprehensive approach to the air vehicle design process using the principles of systems engineering Due to the high cost and the risks associated with development, complex aircraft systems have become a prime candidate for the adoption of systems engineering methodologies. This book presents the entire process of aircraft design based on a systems engineering approach from conceptual design phase, through to preliminary design phase and to detail design phase. Presenting in one volume the methodologies behind aircraft design, this book covers the components and the issues affected by design procedures. The basic topics that are essential to the process, such as aerodynamics, flight stability and control, aero-structure, and aircraft performance are reviewed in various chapters where required. Based on these fundamentals and design requirements, the author explains the design process in a holistic manner to emphasise the integration of the individual components into the overall design. Throughout the book the various design options are considered and weighed against each other, to give readers a practical understanding of the process overall. Readers with knowledge of the fundamental concepts of aerodynamics, propulsion, aero-structure, and flight dynamics will find this book ideal to progress towards the next stage in their understanding of the topic. Furthermore, the broad variety of design techniques covered ensures that readers have the freedom and flexibility to satisfy the design requirements when approaching real-world projects. Key features: • Provides full coverage of the design aspects of an air vehicle including: aeronautical concepts, design techniques and design flowcharts • Features end of chapter problems to reinforce the learning process as well as fully solved design examples at component level • Includes fundamental explanations for aeronautical engineering students and practicing engineers • Features a solutions manual to sample questions on the book’s companion website Companion website - www.wiley.com/go/sadraey




Python for Mechanical and Aerospace Engineering


Book Description

The traditional computer science courses for engineering focus on the fundamentals of programming without demonstrating the wide array of practical applications for fields outside of computer science. Thus, the mindset of “Java/Python is for computer science people or programmers, and MATLAB is for engineering” develops. MATLAB tends to dominate the engineering space because it is viewed as a batteries-included software kit that is focused on functional programming. Everything in MATLAB is some sort of array, and it lends itself to engineering integration with its toolkits like Simulink and other add-ins. The downside of MATLAB is that it is proprietary software, the license is expensive to purchase, and it is more limited than Python for doing tasks besides calculating or data capturing. This book is about the Python programming language. Specifically, it is about Python in the context of mechanical and aerospace engineering. Did you know that Python can be used to model a satellite orbiting the Earth? You can find the completed programs and a very helpful 595 page NSA Python tutorial at the book’s GitHub page at https://www.github.com/alexkenan/pymae. Read more about the book, including a sample part of Chapter 5, at https://pymae.github.io




Complex Systems Engineering


Book Description

Presents state-of-the-art thought leadership on system complexity for aerospace and aviation, where breakthrough paradigms and strategies are sorely needed. The breadth of topics covered provide an enriched view of all types of systems-technical, machine, and human systems - to both practitioners and academics.




NewSpace Systems Engineering


Book Description

This book provides a guide to engineering successful and reliable products for the NewSpace industry. By discussing both the challenges involved in designing technical artefacts, and the challenges of growing an organisation, the book presents a unique approach to the topic. New Space Systems Engineering explores numerous difficulties encountered when designing a space system from scratch on limited budgets, non-existing processes, and great deal of organizational fluidity and emergence. It combines technical topics related to design, such as system requirements, modular architectures, and system integration, with topics related to organizational design, complexity, systems thinking, design thinking and a model based systems engineering. Its integrated approach mean this book will be of interest to researchers, engineers, investors, and early-stage space companies alike. It will help New Space founders and professionals develop their technologies and business practices, leading to more robust companies and engineering development.




Spacecraft Systems Engineering


Book Description

Following on from the hugely successful previous editions, the third edition of Spacecraft Systems Engineering incorporates the most recent technological advances in spacecraft and satellite engineering. With emphasis on recent developments in space activities, this new edition has been completely revised. Every chapter has been updated and rewritten by an expert engineer in the field, with emphasis on the bus rather than the payload. Encompassing the fundamentals of spacecraft engineering, the book begins with front-end system-level issues, such as environment, mission analysis and system engineering, and progresses to a detailed examination of subsystem elements which represent the core of spacecraft design - mechanical, electrical, propulsion, thermal, control etc. This quantitative treatment is supplemented by an appreciation of the interactions between the elements, which deeply influence the process of spacecraft systems design. In particular the revised text includes * A new chapter on small satellites engineering and applications which has been contributed by two internationally-recognised experts, with insights into small satellite systems engineering. * Additions to the mission analysis chapter, treating issues of aero-manouevring, constellation design and small body missions. In summary, this is an outstanding textbook for aerospace engineering and design students, and offers essential reading for spacecraft engineers, designers and research scientists. The comprehensive approach provides an invaluable resource to spacecraft manufacturers and agencies across the world.




Fundamentals of Aerospace Engineering


Book Description

This "is a textbook that provides an introductory, thorough overview of aeronautical engineering, and it is aimed at serving as reference for an undergraduate course on aerospace engineering. The book is divided into three parts, namely: Introduction (The Scope, Generalities), The Aircraft (Aerodynamics, matericals and Structures, Propulsion, Instruments and Systems, Flight Mechanics), and Air Transporation, Airports, and Air Navigation."--




Practical Model-Based Systems Engineering


Book Description

This comprehensive resource provides systems engineers and practitioners with the analytic, design and modeling tools of the Model-Based Systems Engineering (MBSE) methodology of Integrated Systems Engineering (ISE) and Pipelines of Processes in Object Oriented Architectures (PPOOA) methodology. This methodology integrates model based systems and software engineering approaches for the development of complex products, including aerospace, robotics and energy domains applications. Readers learn how to synthesize physical architectures using design heuristics and trade-off analysis. The book provides information about how to identify, classify and specify the system requirements of a new product or service. Using Systems Modeling Language (SysML) constructs, readers will be able to apply ISE & PPOOA methodology in the engineering activities of their own systems.




Aerospace Propulsion Systems


Book Description

Aerospace Propulsion Systems is a unique book focusing on each type of propulsion system commonly used in aerospace vehicles today: rockets, piston aero engines, gas turbine engines, ramjets, and scramjets. Dr. Thomas A. Ward introduces each system in detail, imparting an understanding of basic engineering principles, describing key functionality mechanisms used in past and modern designs, and provides guidelines for student design projects. With a balance of theory, fundamental performance analysis, and design, the book is specifically targeted to students or professionals who are new to the field and is arranged in an intuitive, systematic format to enhance learning. Covers all engine types, including piston aero engines Design principles presented in historical order for progressive understanding Focuses on major elements to avoid overwhelming or confusing readers Presents example systems from the US, the UK, Germany, Russia, Europe, China, Japan, and India Richly illustrated with detailed photographs Cartoon panels present the subject in an interesting, easy-to-understand way Contains carefully constructed problems (with a solution manual available to the educator) Lecture slides and additional problem sets for instructor use Advanced undergraduate students, graduate students and engineering professionals new to the area of propulsion will find Aerospace Propulsion Systems a highly accessible guide to grasping the key essentials. Field experts will also find that the book is a very useful resource for explaining propulsion issues or technology to engineers, technicians, businessmen, or policy makers. Post-graduates involved in multi-disciplinary research or anybody interested in learning more about spacecraft, aircraft, or engineering would find this book to be a helpful reference. Lecture materials for instructors available at www.wiley.com/go/wardaero




Fundamentals of Space Systems


Book Description

Fundamentals of Space Systems was developed to satisfy two objectives: the first is to provide a text suitable for use in an advanced undergraduate or beginning graduate course in both space systems engineering and space system design. The second is to be a primer and reference book for space professionals wishing to broaden their capabilities to develop, manage the development, or operate space systems. The authors of the individual chapters are practicing engineers that have had extensive experience in developing sophisticated experimental and operational spacecraft systems in addition to having experience teaching the subject material. The text presents the fundamentals of all the subsystems of a spacecraft missions and includes illustrative examples drawn from actual experience to enhance the learning experience. It includes a chapter on each of the relevant major disciplines and subsystems including space systems engineering, space environment, astrodynamics, propulsion and flight mechanics, attitude determination and control, power systems, thermal control, configuration management and structures, communications, command and telemetry, data processing, embedded flight software, survuvability and reliability, integration and test, mission operations, and the initial conceptual design of a typical small spacecraft mission.